/* * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/remote_bitrate_estimator/aimd_rate_control.h" #include #include #include #include "webrtc/base/checks.h" #include "webrtc/modules/remote_bitrate_estimator/overuse_detector.h" #include "webrtc/modules/remote_bitrate_estimator/include/remote_bitrate_estimator.h" #include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h" namespace webrtc { static const int64_t kDefaultRttMs = 200; static const int64_t kLogIntervalMs = 1000; static const double kWithinIncomingBitrateHysteresis = 1.05; static const int64_t kMaxFeedbackIntervalMs = 1000; AimdRateControl::AimdRateControl() : min_configured_bitrate_bps_( RemoteBitrateEstimator::kDefaultMinBitrateBps), max_configured_bitrate_bps_(30000000), current_bitrate_bps_(max_configured_bitrate_bps_), avg_max_bitrate_kbps_(-1.0f), var_max_bitrate_kbps_(0.4f), rate_control_state_(kRcHold), rate_control_region_(kRcMaxUnknown), time_last_bitrate_change_(-1), current_input_(kBwNormal, 0, 1.0), updated_(false), time_first_incoming_estimate_(-1), bitrate_is_initialized_(false), beta_(0.85f), rtt_(kDefaultRttMs), time_of_last_log_(-1), in_experiment_(AdaptiveThresholdExperimentIsEnabled()) {} void AimdRateControl::SetMinBitrate(int min_bitrate_bps) { min_configured_bitrate_bps_ = min_bitrate_bps; current_bitrate_bps_ = std::max(min_bitrate_bps, current_bitrate_bps_); } bool AimdRateControl::ValidEstimate() const { return bitrate_is_initialized_; } int64_t AimdRateControl::GetFeedbackInterval() const { // Estimate how often we can send RTCP if we allocate up to 5% of bandwidth // to feedback. static const int kRtcpSize = 80; int64_t interval = static_cast( kRtcpSize * 8.0 * 1000.0 / (0.05 * current_bitrate_bps_) + 0.5); const int64_t kMinFeedbackIntervalMs = 200; return std::min(std::max(interval, kMinFeedbackIntervalMs), kMaxFeedbackIntervalMs); } bool AimdRateControl::TimeToReduceFurther(int64_t time_now, uint32_t incoming_bitrate_bps) const { const int64_t bitrate_reduction_interval = std::max(std::min(rtt_, 200), 10); if (time_now - time_last_bitrate_change_ >= bitrate_reduction_interval) { return true; } if (ValidEstimate()) { const int threshold = static_cast(kWithinIncomingBitrateHysteresis * incoming_bitrate_bps); const int bitrate_difference = LatestEstimate() - incoming_bitrate_bps; return bitrate_difference > threshold; } return false; } uint32_t AimdRateControl::LatestEstimate() const { return current_bitrate_bps_; } uint32_t AimdRateControl::UpdateBandwidthEstimate(int64_t now_ms) { current_bitrate_bps_ = ChangeBitrate(current_bitrate_bps_, current_input_._incomingBitRate, now_ms); if (now_ms - time_of_last_log_ > kLogIntervalMs) { time_of_last_log_ = now_ms; } return current_bitrate_bps_; } void AimdRateControl::SetRtt(int64_t rtt) { rtt_ = rtt; } void AimdRateControl::Update(const RateControlInput* input, int64_t now_ms) { assert(input); // Set the initial bit rate value to what we're receiving the first half // second. if (!bitrate_is_initialized_) { const int64_t kInitializationTimeMs = 5000; RTC_DCHECK_LE(kBitrateWindowMs, kInitializationTimeMs); if (time_first_incoming_estimate_ < 0) { if (input->_incomingBitRate > 0) { time_first_incoming_estimate_ = now_ms; } } else if (now_ms - time_first_incoming_estimate_ > kInitializationTimeMs && input->_incomingBitRate > 0) { current_bitrate_bps_ = input->_incomingBitRate; bitrate_is_initialized_ = true; } } if (updated_ && current_input_._bwState == kBwOverusing) { // Only update delay factor and incoming bit rate. We always want to react // on an over-use. current_input_._noiseVar = input->_noiseVar; current_input_._incomingBitRate = input->_incomingBitRate; } else { updated_ = true; current_input_ = *input; } } void AimdRateControl::SetEstimate(int bitrate_bps, int64_t now_ms) { updated_ = true; bitrate_is_initialized_ = true; current_bitrate_bps_ = ChangeBitrate(bitrate_bps, bitrate_bps, now_ms); } uint32_t AimdRateControl::ChangeBitrate(uint32_t current_bitrate_bps, uint32_t incoming_bitrate_bps, int64_t now_ms) { if (!updated_) { return current_bitrate_bps_; } // An over-use should always trigger us to reduce the bitrate, even though // we have not yet established our first estimate. By acting on the over-use, // we will end up with a valid estimate. if (!bitrate_is_initialized_ && current_input_._bwState != kBwOverusing) return current_bitrate_bps_; updated_ = false; ChangeState(current_input_, now_ms); // Calculated here because it's used in multiple places. const float incoming_bitrate_kbps = incoming_bitrate_bps / 1000.0f; // Calculate the max bit rate std dev given the normalized // variance and the current incoming bit rate. const float std_max_bit_rate = sqrt(var_max_bitrate_kbps_ * avg_max_bitrate_kbps_); switch (rate_control_state_) { case kRcHold: break; case kRcIncrease: if (avg_max_bitrate_kbps_ >= 0 && incoming_bitrate_kbps > avg_max_bitrate_kbps_ + 3 * std_max_bit_rate) { ChangeRegion(kRcMaxUnknown); avg_max_bitrate_kbps_ = -1.0; } if (rate_control_region_ == kRcNearMax) { // Approximate the over-use estimator delay to 100 ms. const int64_t response_time = rtt_ + 100; uint32_t additive_increase_bps = AdditiveRateIncrease( now_ms, time_last_bitrate_change_, response_time); current_bitrate_bps += additive_increase_bps; } else { uint32_t multiplicative_increase_bps = MultiplicativeRateIncrease( now_ms, time_last_bitrate_change_, current_bitrate_bps); current_bitrate_bps += multiplicative_increase_bps; } time_last_bitrate_change_ = now_ms; break; case kRcDecrease: bitrate_is_initialized_ = true; if (incoming_bitrate_bps < min_configured_bitrate_bps_) { current_bitrate_bps = min_configured_bitrate_bps_; } else { // Set bit rate to something slightly lower than max // to get rid of any self-induced delay. current_bitrate_bps = static_cast(beta_ * incoming_bitrate_bps + 0.5); if (current_bitrate_bps > current_bitrate_bps_) { // Avoid increasing the rate when over-using. if (rate_control_region_ != kRcMaxUnknown) { current_bitrate_bps = static_cast( beta_ * avg_max_bitrate_kbps_ * 1000 + 0.5f); } current_bitrate_bps = std::min(current_bitrate_bps, current_bitrate_bps_); } ChangeRegion(kRcNearMax); if (incoming_bitrate_kbps < avg_max_bitrate_kbps_ - 3 * std_max_bit_rate) { avg_max_bitrate_kbps_ = -1.0f; } UpdateMaxBitRateEstimate(incoming_bitrate_kbps); } // Stay on hold until the pipes are cleared. ChangeState(kRcHold); time_last_bitrate_change_ = now_ms; break; default: assert(false); } if ((incoming_bitrate_bps > 100000 || current_bitrate_bps > 150000) && current_bitrate_bps > 1.5 * incoming_bitrate_bps) { // Allow changing the bit rate if we are operating at very low rates // Don't change the bit rate if the send side is too far off current_bitrate_bps = current_bitrate_bps_; time_last_bitrate_change_ = now_ms; } return current_bitrate_bps; } uint32_t AimdRateControl::MultiplicativeRateIncrease( int64_t now_ms, int64_t last_ms, uint32_t current_bitrate_bps) const { double alpha = 1.08; if (last_ms > -1) { int time_since_last_update_ms = std::min(static_cast(now_ms - last_ms), 1000); alpha = pow(alpha, time_since_last_update_ms / 1000.0); } uint32_t multiplicative_increase_bps = std::max( current_bitrate_bps * (alpha - 1.0), 1000.0); return multiplicative_increase_bps; } uint32_t AimdRateControl::AdditiveRateIncrease( int64_t now_ms, int64_t last_ms, int64_t response_time_ms) const { assert(response_time_ms > 0); double beta = 0.0; if (last_ms > 0) { beta = std::min((now_ms - last_ms) / static_cast(response_time_ms), 1.0); if (in_experiment_) beta /= 2.0; } double bits_per_frame = static_cast(current_bitrate_bps_) / 30.0; double packets_per_frame = std::ceil(bits_per_frame / (8.0 * 1200.0)); double avg_packet_size_bits = bits_per_frame / packets_per_frame; uint32_t additive_increase_bps = std::max( 1000.0, beta * avg_packet_size_bits); return additive_increase_bps; } void AimdRateControl::UpdateMaxBitRateEstimate(float incoming_bitrate_kbps) { const float alpha = 0.05f; if (avg_max_bitrate_kbps_ == -1.0f) { avg_max_bitrate_kbps_ = incoming_bitrate_kbps; } else { avg_max_bitrate_kbps_ = (1 - alpha) * avg_max_bitrate_kbps_ + alpha * incoming_bitrate_kbps; } // Estimate the max bit rate variance and normalize the variance // with the average max bit rate. const float norm = std::max(avg_max_bitrate_kbps_, 1.0f); var_max_bitrate_kbps_ = (1 - alpha) * var_max_bitrate_kbps_ + alpha * (avg_max_bitrate_kbps_ - incoming_bitrate_kbps) * (avg_max_bitrate_kbps_ - incoming_bitrate_kbps) / norm; // 0.4 ~= 14 kbit/s at 500 kbit/s if (var_max_bitrate_kbps_ < 0.4f) { var_max_bitrate_kbps_ = 0.4f; } // 2.5f ~= 35 kbit/s at 500 kbit/s if (var_max_bitrate_kbps_ > 2.5f) { var_max_bitrate_kbps_ = 2.5f; } } void AimdRateControl::ChangeState(const RateControlInput& input, int64_t now_ms) { switch (current_input_._bwState) { case kBwNormal: if (rate_control_state_ == kRcHold) { time_last_bitrate_change_ = now_ms; ChangeState(kRcIncrease); } break; case kBwOverusing: if (rate_control_state_ != kRcDecrease) { ChangeState(kRcDecrease); } break; case kBwUnderusing: ChangeState(kRcHold); break; default: assert(false); } } void AimdRateControl::ChangeRegion(RateControlRegion region) { rate_control_region_ = region; } void AimdRateControl::ChangeState(RateControlState new_state) { rate_control_state_ = new_state; } } // namespace webrtc