/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/base/constructormagic.h" #include "webrtc/modules/remote_bitrate_estimator/remote_bitrate_estimator_abs_send_time.h" #include "webrtc/modules/remote_bitrate_estimator/remote_bitrate_estimator_unittest_helper.h" namespace webrtc { class RemoteBitrateEstimatorAbsSendTimeTest : public RemoteBitrateEstimatorTest { public: RemoteBitrateEstimatorAbsSendTimeTest() {} virtual void SetUp() { bitrate_estimator_.reset(new RemoteBitrateEstimatorAbsSendTime( bitrate_observer_.get(), &clock_)); } protected: RTC_DISALLOW_COPY_AND_ASSIGN(RemoteBitrateEstimatorAbsSendTimeTest); }; TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, InitialBehavior) { InitialBehaviorTestHelper(508017); } TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, RateIncreaseReordering) { RateIncreaseReorderingTestHelper(506422); } TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, RateIncreaseRtpTimestamps) { RateIncreaseRtpTimestampsTestHelper(1240); } TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropOneStream) { CapacityDropTestHelper(1, false, 600); } TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropOneStreamWrap) { CapacityDropTestHelper(1, true, 600); } TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropTwoStreamsWrap) { CapacityDropTestHelper(2, true, 533); } TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropThreeStreamsWrap) { CapacityDropTestHelper(3, true, 700); } TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropThirteenStreamsWrap) { CapacityDropTestHelper(13, true, 700); } TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropNineteenStreamsWrap) { CapacityDropTestHelper(19, true, 700); } TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropThirtyStreamsWrap) { CapacityDropTestHelper(30, true, 700); } TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, TestTimestampGrouping) { TestTimestampGroupingTestHelper(); } TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, TestGetStats) { TestGetStatsHelper(); } TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, TestShortTimeoutAndWrap) { // Simulate a client leaving and rejoining the call after 35 seconds. This // will make abs send time wrap, so if streams aren't timed out properly // the next 30 seconds of packets will be out of order. TestWrappingHelper(35); } TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, TestLongTimeoutAndWrap) { // Simulate a client leaving and rejoining the call after some multiple of // 64 seconds later. This will cause a zero difference in abs send times due // to the wrap, but a big difference in arrival time, if streams aren't // properly timed out. TestWrappingHelper(10 * 64); } TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, TestProcessAfterTimeout) { // This time constant must be equal to the ones defined for the // RemoteBitrateEstimator. const int64_t kStreamTimeOutMs = 2000; const int64_t kProcessIntervalMs = 1000; IncomingPacket(0, 1000, clock_.TimeInMilliseconds(), 0, 0, true); clock_.AdvanceTimeMilliseconds(kStreamTimeOutMs + 1); // Trigger timeout. EXPECT_EQ(0, bitrate_estimator_->Process()); clock_.AdvanceTimeMilliseconds(kProcessIntervalMs); // This shouldn't crash. EXPECT_EQ(0, bitrate_estimator_->Process()); } TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, TestProbeDetection) { const int kProbeLength = 5; int64_t now_ms = clock_.TimeInMilliseconds(); // First burst sent at 8 * 1000 / 10 = 800 kbps. for (int i = 0; i < kProbeLength; ++i) { clock_.AdvanceTimeMilliseconds(10); now_ms = clock_.TimeInMilliseconds(); IncomingPacket(0, 1000, now_ms, 90 * now_ms, AbsSendTime(now_ms, 1000), true); } // Second burst sent at 8 * 1000 / 5 = 1600 kbps. for (int i = 0; i < kProbeLength; ++i) { clock_.AdvanceTimeMilliseconds(5); now_ms = clock_.TimeInMilliseconds(); IncomingPacket(0, 1000, now_ms, 90 * now_ms, AbsSendTime(now_ms, 1000), true); } EXPECT_EQ(0, bitrate_estimator_->Process()); EXPECT_TRUE(bitrate_observer_->updated()); EXPECT_GT(bitrate_observer_->latest_bitrate(), 1500000u); } TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, TestProbeDetectionNonPacedPackets) { const int kProbeLength = 5; int64_t now_ms = clock_.TimeInMilliseconds(); // First burst sent at 8 * 1000 / 10 = 800 kbps, but with every other packet // not being paced which could mess things up. for (int i = 0; i < kProbeLength; ++i) { clock_.AdvanceTimeMilliseconds(5); now_ms = clock_.TimeInMilliseconds(); IncomingPacket(0, 1000, now_ms, 90 * now_ms, AbsSendTime(now_ms, 1000), true); // Non-paced packet, arriving 5 ms after. clock_.AdvanceTimeMilliseconds(5); IncomingPacket(0, 100, now_ms, 90 * now_ms, AbsSendTime(now_ms, 1000), false); } EXPECT_EQ(0, bitrate_estimator_->Process()); EXPECT_TRUE(bitrate_observer_->updated()); EXPECT_GT(bitrate_observer_->latest_bitrate(), 800000u); } // Packets will require 5 ms to be transmitted to the receiver, causing packets // of the second probe to be dispersed. TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, TestProbeDetectionTooHighBitrate) { const int kProbeLength = 5; int64_t now_ms = clock_.TimeInMilliseconds(); int64_t send_time_ms = 0; // First burst sent at 8 * 1000 / 10 = 800 kbps. for (int i = 0; i < kProbeLength; ++i) { clock_.AdvanceTimeMilliseconds(10); now_ms = clock_.TimeInMilliseconds(); send_time_ms += 10; IncomingPacket(0, 1000, now_ms, 90 * send_time_ms, AbsSendTime(send_time_ms, 1000), true); } // Second burst sent at 8 * 1000 / 5 = 1600 kbps, arriving at 8 * 1000 / 8 = // 1000 kbps. for (int i = 0; i < kProbeLength; ++i) { clock_.AdvanceTimeMilliseconds(8); now_ms = clock_.TimeInMilliseconds(); send_time_ms += 5; IncomingPacket(0, 1000, now_ms, send_time_ms, AbsSendTime(send_time_ms, 1000), true); } EXPECT_EQ(0, bitrate_estimator_->Process()); EXPECT_TRUE(bitrate_observer_->updated()); EXPECT_NEAR(bitrate_observer_->latest_bitrate(), 800000u, 10000); } TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, TestProbeDetectionSlightlyFasterArrival) { const int kProbeLength = 5; int64_t now_ms = clock_.TimeInMilliseconds(); // First burst sent at 8 * 1000 / 10 = 800 kbps. // Arriving at 8 * 1000 / 5 = 1600 kbps. int64_t send_time_ms = 0; for (int i = 0; i < kProbeLength; ++i) { clock_.AdvanceTimeMilliseconds(5); send_time_ms += 10; now_ms = clock_.TimeInMilliseconds(); IncomingPacket(0, 1000, now_ms, 90 * send_time_ms, AbsSendTime(send_time_ms, 1000), true); } EXPECT_EQ(0, bitrate_estimator_->Process()); EXPECT_TRUE(bitrate_observer_->updated()); EXPECT_GT(bitrate_observer_->latest_bitrate(), 800000u); } TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, TestProbeDetectionFasterArrival) { const int kProbeLength = 5; int64_t now_ms = clock_.TimeInMilliseconds(); // First burst sent at 8 * 1000 / 10 = 800 kbps. // Arriving at 8 * 1000 / 5 = 1600 kbps. int64_t send_time_ms = 0; for (int i = 0; i < kProbeLength; ++i) { clock_.AdvanceTimeMilliseconds(1); send_time_ms += 10; now_ms = clock_.TimeInMilliseconds(); IncomingPacket(0, 1000, now_ms, 90 * send_time_ms, AbsSendTime(send_time_ms, 1000), true); } EXPECT_EQ(0, bitrate_estimator_->Process()); EXPECT_FALSE(bitrate_observer_->updated()); } TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, TestProbeDetectionSlowerArrival) { const int kProbeLength = 5; int64_t now_ms = clock_.TimeInMilliseconds(); // First burst sent at 8 * 1000 / 5 = 1600 kbps. // Arriving at 8 * 1000 / 7 = 1142 kbps. int64_t send_time_ms = 0; for (int i = 0; i < kProbeLength; ++i) { clock_.AdvanceTimeMilliseconds(7); send_time_ms += 5; now_ms = clock_.TimeInMilliseconds(); IncomingPacket(0, 1000, now_ms, 90 * send_time_ms, AbsSendTime(send_time_ms, 1000), true); } EXPECT_EQ(0, bitrate_estimator_->Process()); EXPECT_TRUE(bitrate_observer_->updated()); EXPECT_NEAR(bitrate_observer_->latest_bitrate(), 1140000, 10000); } TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, TestProbeDetectionSlowerArrivalHighBitrate) { const int kProbeLength = 5; int64_t now_ms = clock_.TimeInMilliseconds(); // Burst sent at 8 * 1000 / 1 = 8000 kbps. // Arriving at 8 * 1000 / 2 = 4000 kbps. int64_t send_time_ms = 0; for (int i = 0; i < kProbeLength; ++i) { clock_.AdvanceTimeMilliseconds(2); send_time_ms += 1; now_ms = clock_.TimeInMilliseconds(); IncomingPacket(0, 1000, now_ms, 90 * send_time_ms, AbsSendTime(send_time_ms, 1000), true); } EXPECT_EQ(0, bitrate_estimator_->Process()); EXPECT_TRUE(bitrate_observer_->updated()); EXPECT_NEAR(bitrate_observer_->latest_bitrate(), 4000000u, 10000); } TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, ProbingIgnoresSmallPackets) { const int kProbeLength = 5; int64_t now_ms = clock_.TimeInMilliseconds(); // Probing with 200 bytes every 10 ms, should be ignored by the probe // detection. for (int i = 0; i < kProbeLength; ++i) { clock_.AdvanceTimeMilliseconds(10); now_ms = clock_.TimeInMilliseconds(); IncomingPacket(0, 200, now_ms, 90 * now_ms, AbsSendTime(now_ms, 1000), true); } EXPECT_EQ(0, bitrate_estimator_->Process()); EXPECT_FALSE(bitrate_observer_->updated()); // Followed by a probe with 1000 bytes packets, should be detected as a // probe. for (int i = 0; i < kProbeLength; ++i) { clock_.AdvanceTimeMilliseconds(10); now_ms = clock_.TimeInMilliseconds(); IncomingPacket(0, 1000, now_ms, 90 * now_ms, AbsSendTime(now_ms, 1000), true); } // Wait long enough so that we can call Process again. clock_.AdvanceTimeMilliseconds(1000); EXPECT_EQ(0, bitrate_estimator_->Process()); EXPECT_TRUE(bitrate_observer_->updated()); EXPECT_NEAR(bitrate_observer_->latest_bitrate(), 800000u, 10000); } } // namespace webrtc