/* * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/rtp_rtcp/source/h264_sps_parser.h" #include "webrtc/base/bitbuffer.h" #include "webrtc/base/bytebuffer.h" #include "webrtc/base/logging.h" #define RETURN_FALSE_ON_FAIL(x) \ if (!(x)) { \ return false; \ } namespace webrtc { H264SpsParser::H264SpsParser(const uint8_t* sps, size_t byte_length) : sps_(sps), byte_length_(byte_length), width_(), height_() { } bool H264SpsParser::Parse() { // General note: this is based off the 02/2014 version of the H.264 standard. // You can find it on this page: // http://www.itu.int/rec/T-REC-H.264 const char* sps_bytes = reinterpret_cast(sps_); // First, parse out rbsp, which is basically the source buffer minus emulation // bytes (the last byte of a 0x00 0x00 0x03 sequence). RBSP is defined in // section 7.3.1 of the H.264 standard. rtc::ByteBuffer rbsp_buffer; for (size_t i = 0; i < byte_length_;) { // Be careful about over/underflow here. byte_length_ - 3 can underflow, and // i + 3 can overflow, but byte_length_ - i can't, because i < byte_length_ // above, and that expression will produce the number of bytes left in // the stream including the byte at i. if (byte_length_ - i >= 3 && sps_[i] == 0 && sps_[i + 1] == 0 && sps_[i + 2] == 3) { // Two rbsp bytes + the emulation byte. rbsp_buffer.WriteBytes(sps_bytes + i, 2); i += 3; } else { // Single rbsp byte. rbsp_buffer.WriteBytes(sps_bytes + i, 1); i++; } } // Now, we need to use a bit buffer to parse through the actual AVC SPS // format. See Section 7.3.2.1.1 ("Sequence parameter set data syntax") of the // H.264 standard for a complete description. // Since we only care about resolution, we ignore the majority of fields, but // we still have to actively parse through a lot of the data, since many of // the fields have variable size. // We're particularly interested in: // chroma_format_idc -> affects crop units // pic_{width,height}_* -> resolution of the frame in macroblocks (16x16). // frame_crop_*_offset -> crop information rtc::BitBuffer parser(reinterpret_cast(rbsp_buffer.Data()), rbsp_buffer.Length()); // The golomb values we have to read, not just consume. uint32_t golomb_ignored; // separate_colour_plane_flag is optional (assumed 0), but has implications // about the ChromaArrayType, which modifies how we treat crop coordinates. uint32_t separate_colour_plane_flag = 0; // chroma_format_idc will be ChromaArrayType if separate_colour_plane_flag is // 0. It defaults to 1, when not specified. uint32_t chroma_format_idc = 1; // profile_idc: u(8). We need it to determine if we need to read/skip chroma // formats. uint8_t profile_idc; RETURN_FALSE_ON_FAIL(parser.ReadUInt8(&profile_idc)); // constraint_set0_flag through constraint_set5_flag + reserved_zero_2bits // 1 bit each for the flags + 2 bits = 8 bits = 1 byte. RETURN_FALSE_ON_FAIL(parser.ConsumeBytes(1)); // level_idc: u(8) RETURN_FALSE_ON_FAIL(parser.ConsumeBytes(1)); // seq_parameter_set_id: ue(v) RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored)); // See if profile_idc has chroma format information. if (profile_idc == 100 || profile_idc == 110 || profile_idc == 122 || profile_idc == 244 || profile_idc == 44 || profile_idc == 83 || profile_idc == 86 || profile_idc == 118 || profile_idc == 128 || profile_idc == 138 || profile_idc == 139 || profile_idc == 134) { // chroma_format_idc: ue(v) RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&chroma_format_idc)); if (chroma_format_idc == 3) { // separate_colour_plane_flag: u(1) RETURN_FALSE_ON_FAIL(parser.ReadBits(&separate_colour_plane_flag, 1)); } // bit_depth_luma_minus8: ue(v) RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored)); // bit_depth_chroma_minus8: ue(v) RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored)); // qpprime_y_zero_transform_bypass_flag: u(1) RETURN_FALSE_ON_FAIL(parser.ConsumeBits(1)); // seq_scaling_matrix_present_flag: u(1) uint32_t seq_scaling_matrix_present_flag; RETURN_FALSE_ON_FAIL(parser.ReadBits(&seq_scaling_matrix_present_flag, 1)); if (seq_scaling_matrix_present_flag) { // seq_scaling_list_present_flags. Either 8 or 12, depending on // chroma_format_idc. uint32_t seq_scaling_list_present_flags; if (chroma_format_idc != 3) { RETURN_FALSE_ON_FAIL( parser.ReadBits(&seq_scaling_list_present_flags, 8)); } else { RETURN_FALSE_ON_FAIL( parser.ReadBits(&seq_scaling_list_present_flags, 12)); } // We don't support reading the sequence scaling list, and we don't really // see/use them in practice, so we'll just reject the full sps if we see // any provided. if (seq_scaling_list_present_flags > 0) { LOG(LS_WARNING) << "SPS contains scaling lists, which are unsupported."; return false; } } } // log2_max_frame_num_minus4: ue(v) RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored)); // pic_order_cnt_type: ue(v) uint32_t pic_order_cnt_type; RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&pic_order_cnt_type)); if (pic_order_cnt_type == 0) { // log2_max_pic_order_cnt_lsb_minus4: ue(v) RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored)); } else if (pic_order_cnt_type == 1) { // delta_pic_order_always_zero_flag: u(1) RETURN_FALSE_ON_FAIL(parser.ConsumeBits(1)); // offset_for_non_ref_pic: se(v) RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored)); // offset_for_top_to_bottom_field: se(v) RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored)); // num_ref_frames_in_pic_order_cnt_cycle: ue(v) uint32_t num_ref_frames_in_pic_order_cnt_cycle; RETURN_FALSE_ON_FAIL( parser.ReadExponentialGolomb(&num_ref_frames_in_pic_order_cnt_cycle)); for (size_t i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; ++i) { // offset_for_ref_frame[i]: se(v) RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored)); } } // max_num_ref_frames: ue(v) RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored)); // gaps_in_frame_num_value_allowed_flag: u(1) RETURN_FALSE_ON_FAIL(parser.ConsumeBits(1)); // // IMPORTANT ONES! Now we're getting to resolution. First we read the pic // width/height in macroblocks (16x16), which gives us the base resolution, // and then we continue on until we hit the frame crop offsets, which are used // to signify resolutions that aren't multiples of 16. // // pic_width_in_mbs_minus1: ue(v) uint32_t pic_width_in_mbs_minus1; RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&pic_width_in_mbs_minus1)); // pic_height_in_map_units_minus1: ue(v) uint32_t pic_height_in_map_units_minus1; RETURN_FALSE_ON_FAIL( parser.ReadExponentialGolomb(&pic_height_in_map_units_minus1)); // frame_mbs_only_flag: u(1) uint32_t frame_mbs_only_flag; RETURN_FALSE_ON_FAIL(parser.ReadBits(&frame_mbs_only_flag, 1)); if (!frame_mbs_only_flag) { // mb_adaptive_frame_field_flag: u(1) RETURN_FALSE_ON_FAIL(parser.ConsumeBits(1)); } // direct_8x8_inference_flag: u(1) RETURN_FALSE_ON_FAIL(parser.ConsumeBits(1)); // // MORE IMPORTANT ONES! Now we're at the frame crop information. // // frame_cropping_flag: u(1) uint32_t frame_cropping_flag; uint32_t frame_crop_left_offset = 0; uint32_t frame_crop_right_offset = 0; uint32_t frame_crop_top_offset = 0; uint32_t frame_crop_bottom_offset = 0; RETURN_FALSE_ON_FAIL(parser.ReadBits(&frame_cropping_flag, 1)); if (frame_cropping_flag) { // frame_crop_{left, right, top, bottom}_offset: ue(v) RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&frame_crop_left_offset)); RETURN_FALSE_ON_FAIL( parser.ReadExponentialGolomb(&frame_crop_right_offset)); RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&frame_crop_top_offset)); RETURN_FALSE_ON_FAIL( parser.ReadExponentialGolomb(&frame_crop_bottom_offset)); } // Far enough! We don't use the rest of the SPS. // Start with the resolution determined by the pic_width/pic_height fields. int width = 16 * (pic_width_in_mbs_minus1 + 1); int height = 16 * (2 - frame_mbs_only_flag) * (pic_height_in_map_units_minus1 + 1); // Figure out the crop units in pixels. That's based on the chroma format's // sampling, which is indicated by chroma_format_idc. if (separate_colour_plane_flag || chroma_format_idc == 0) { frame_crop_bottom_offset *= (2 - frame_mbs_only_flag); frame_crop_top_offset *= (2 - frame_mbs_only_flag); } else if (!separate_colour_plane_flag && chroma_format_idc > 0) { // Width multipliers for formats 1 (4:2:0) and 2 (4:2:2). if (chroma_format_idc == 1 || chroma_format_idc == 2) { frame_crop_left_offset *= 2; frame_crop_right_offset *= 2; } // Height multipliers for format 1 (4:2:0). if (chroma_format_idc == 1) { frame_crop_top_offset *= 2; frame_crop_bottom_offset *= 2; } } // Subtract the crop for each dimension. width -= (frame_crop_left_offset + frame_crop_right_offset); height -= (frame_crop_top_offset + frame_crop_bottom_offset); width_ = width; height_ = height; return true; } } // namespace webrtc