/* * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/rtp_rtcp/source/h264_sps_parser.h" #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/base/arraysize.h" #include "webrtc/base/bitbuffer.h" namespace webrtc { // Example SPS can be generated with ffmpeg. Here's an example set of commands, // runnable on OS X: // 1) Generate a video, from the camera: // ffmpeg -f avfoundation -i "0" -video_size 640x360 camera.mov // // 2) Scale the video to the desired size: // ffmpeg -i camera.mov -vf scale=640x360 scaled.mov // // 3) Get just the H.264 bitstream in AnnexB: // ffmpeg -i scaled.mov -vcodec copy -vbsf h264_mp4toannexb -an out.h264 // // 4) Open out.h264 and find the SPS, generally everything between the first // two start codes (0 0 0 1 or 0 0 1). The first byte should be 0x67, // which should be stripped out before being passed to the parser. static const size_t kSpsBufferMaxSize = 256; // Generates a fake SPS with basically everything empty but the width/height. // Pass in a buffer of at least kSpsBufferMaxSize. // The fake SPS that this generates also always has at least one emulation byte // at offset 2, since the first two bytes are always 0, and has a 0x3 as the // level_idc, to make sure the parser doesn't eat all 0x3 bytes. void GenerateFakeSps(uint16_t width, uint16_t height, uint8_t buffer[]) { uint8_t rbsp[kSpsBufferMaxSize] = {0}; rtc::BitBufferWriter writer(rbsp, kSpsBufferMaxSize); // Profile byte. writer.WriteUInt8(0); // Constraint sets and reserved zero bits. writer.WriteUInt8(0); // level_idc. writer.WriteUInt8(0x3u); // seq_paramter_set_id. writer.WriteExponentialGolomb(0); // Profile is not special, so we skip all the chroma format settings. // Now some bit magic. // log2_max_frame_num_minus4: ue(v). 0 is fine. writer.WriteExponentialGolomb(0); // pic_order_cnt_type: ue(v). 0 is the type we want. writer.WriteExponentialGolomb(0); // log2_max_pic_order_cnt_lsb_minus4: ue(v). 0 is fine. writer.WriteExponentialGolomb(0); // max_num_ref_frames: ue(v). 0 is fine. writer.WriteExponentialGolomb(0); // gaps_in_frame_num_value_allowed_flag: u(1). writer.WriteBits(0, 1); // Next are width/height. First, calculate the mbs/map_units versions. uint16_t width_in_mbs_minus1 = (width + 15) / 16 - 1; // For the height, we're going to define frame_mbs_only_flag, so we need to // divide by 2. See the parser for the full calculation. uint16_t height_in_map_units_minus1 = ((height + 15) / 16 - 1) / 2; // Write each as ue(v). writer.WriteExponentialGolomb(width_in_mbs_minus1); writer.WriteExponentialGolomb(height_in_map_units_minus1); // frame_mbs_only_flag: u(1). Needs to be false. writer.WriteBits(0, 1); // mb_adaptive_frame_field_flag: u(1). writer.WriteBits(0, 1); // direct_8x8_inferene_flag: u(1). writer.WriteBits(0, 1); // frame_cropping_flag: u(1). 1, so we can supply crop. writer.WriteBits(1, 1); // Now we write the left/right/top/bottom crop. For simplicity, we'll put all // the crop at the left/top. // We picked a 4:2:0 format, so the crops are 1/2 the pixel crop values. // Left/right. writer.WriteExponentialGolomb(((16 - (width % 16)) % 16) / 2); writer.WriteExponentialGolomb(0); // Top/bottom. writer.WriteExponentialGolomb(((16 - (height % 16)) % 16) / 2); writer.WriteExponentialGolomb(0); // Get the number of bytes written (including the last partial byte). size_t byte_count, bit_offset; writer.GetCurrentOffset(&byte_count, &bit_offset); if (bit_offset > 0) { byte_count++; } // Now, we need to write the rbsp into bytes. To do that, we'll need to add // emulation 0x03 bytes if there's ever a sequence of 00 00 01 or 00 00 00 01. // To be simple, just add a 0x03 after every 0x00. Extra emulation doesn't // hurt. for (size_t i = 0; i < byte_count;) { // The -3 is intentional; we never need to write an emulation byte if the 00 // is at the end. if (i < byte_count - 3 && rbsp[i] == 0 && rbsp[i + 1] == 0) { *buffer++ = rbsp[i]; *buffer++ = rbsp[i + 1]; *buffer++ = 0x3u; i += 2; } else { *buffer++ = rbsp[i]; ++i; } } } TEST(H264SpsParserTest, TestSampleSPSHdLandscape) { // SPS for a 1280x720 camera capture from ffmpeg on osx. Contains // emulation bytes but no cropping. const uint8_t buffer[] = {0x7A, 0x00, 0x1F, 0xBC, 0xD9, 0x40, 0x50, 0x05, 0xBA, 0x10, 0x00, 0x00, 0x03, 0x00, 0xC0, 0x00, 0x00, 0x2A, 0xE0, 0xF1, 0x83, 0x19, 0x60}; H264SpsParser parser = H264SpsParser(buffer, arraysize(buffer)); EXPECT_TRUE(parser.Parse()); EXPECT_EQ(1280u, parser.width()); EXPECT_EQ(720u, parser.height()); } TEST(H264SpsParserTest, TestSampleSPSVgaLandscape) { // SPS for a 640x360 camera capture from ffmpeg on osx. Contains emulation // bytes and cropping (360 isn't divisible by 16). const uint8_t buffer[] = {0x7A, 0x00, 0x1E, 0xBC, 0xD9, 0x40, 0xA0, 0x2F, 0xF8, 0x98, 0x40, 0x00, 0x00, 0x03, 0x01, 0x80, 0x00, 0x00, 0x56, 0x83, 0xC5, 0x8B, 0x65, 0x80}; H264SpsParser parser = H264SpsParser(buffer, arraysize(buffer)); EXPECT_TRUE(parser.Parse()); EXPECT_EQ(640u, parser.width()); EXPECT_EQ(360u, parser.height()); } TEST(H264SpsParserTest, TestSampleSPSWeirdResolution) { // SPS for a 200x400 camera capture from ffmpeg on osx. Horizontal and // veritcal crop (neither dimension is divisible by 16). const uint8_t buffer[] = {0x7A, 0x00, 0x0D, 0xBC, 0xD9, 0x43, 0x43, 0x3E, 0x5E, 0x10, 0x00, 0x00, 0x03, 0x00, 0x60, 0x00, 0x00, 0x15, 0xA0, 0xF1, 0x42, 0x99, 0x60}; H264SpsParser parser = H264SpsParser(buffer, arraysize(buffer)); EXPECT_TRUE(parser.Parse()); EXPECT_EQ(200u, parser.width()); EXPECT_EQ(400u, parser.height()); } TEST(H264SpsParserTest, TestSyntheticSPSQvgaLandscape) { uint8_t buffer[kSpsBufferMaxSize] = {0}; GenerateFakeSps(320u, 180u, buffer); H264SpsParser parser = H264SpsParser(buffer, arraysize(buffer)); EXPECT_TRUE(parser.Parse()); EXPECT_EQ(320u, parser.width()); EXPECT_EQ(180u, parser.height()); } TEST(H264SpsParserTest, TestSyntheticSPSWeirdResolution) { uint8_t buffer[kSpsBufferMaxSize] = {0}; GenerateFakeSps(156u, 122u, buffer); H264SpsParser parser = H264SpsParser(buffer, arraysize(buffer)); EXPECT_TRUE(parser.Parse()); EXPECT_EQ(156u, parser.width()); EXPECT_EQ(122u, parser.height()); } } // namespace webrtc