/* * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/rtp_rtcp/source/rtp_format_vp9.h" #include #include #include #include "webrtc/base/bitbuffer.h" #include "webrtc/base/checks.h" #include "webrtc/base/logging.h" #define RETURN_FALSE_ON_ERROR(x) \ if (!(x)) { \ return false; \ } namespace webrtc { namespace { // Length of VP9 payload descriptors' fixed part. const size_t kFixedPayloadDescriptorBytes = 1; // Packet fragmentation mode. If true, packets are split into (almost) equal // sizes. Otherwise, as many bytes as possible are fit into one packet. const bool kBalancedMode = true; const uint32_t kReservedBitValue0 = 0; uint8_t TemporalIdxField(const RTPVideoHeaderVP9& hdr, uint8_t def) { return (hdr.temporal_idx == kNoTemporalIdx) ? def : hdr.temporal_idx; } uint8_t SpatialIdxField(const RTPVideoHeaderVP9& hdr, uint8_t def) { return (hdr.spatial_idx == kNoSpatialIdx) ? def : hdr.spatial_idx; } int16_t Tl0PicIdxField(const RTPVideoHeaderVP9& hdr, uint8_t def) { return (hdr.tl0_pic_idx == kNoTl0PicIdx) ? def : hdr.tl0_pic_idx; } uint8_t GofIdxField(const RTPVideoHeaderVP9& hdr, uint8_t def) { return (hdr.gof_idx == kNoGofIdx) ? def : hdr.gof_idx; } // Picture ID: // // +-+-+-+-+-+-+-+-+ // I: |M| PICTURE ID | M:0 => picture id is 7 bits. // +-+-+-+-+-+-+-+-+ M:1 => picture id is 15 bits. // M: | EXTENDED PID | // +-+-+-+-+-+-+-+-+ // size_t PictureIdLength(const RTPVideoHeaderVP9& hdr) { if (hdr.picture_id == kNoPictureId) return 0; return (hdr.max_picture_id == kMaxOneBytePictureId) ? 1 : 2; } bool PictureIdPresent(const RTPVideoHeaderVP9& hdr) { return PictureIdLength(hdr) > 0; } // Layer indices: // // Flexible mode (F=1): Non-flexible mode (F=0): // // +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ // L: | T |U| S |D| |GOF_IDX| S |D| // +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ // | TL0PICIDX | // +-+-+-+-+-+-+-+-+ // size_t LayerInfoLength(const RTPVideoHeaderVP9& hdr) { if (hdr.flexible_mode) { return (hdr.temporal_idx == kNoTemporalIdx && hdr.spatial_idx == kNoSpatialIdx) ? 0 : 1; } else { return (hdr.gof_idx == kNoGofIdx && hdr.spatial_idx == kNoSpatialIdx) ? 0 : 2; } } bool LayerInfoPresent(const RTPVideoHeaderVP9& hdr) { return LayerInfoLength(hdr) > 0; } // Reference indices: // // +-+-+-+-+-+-+-+-+ P=1,F=1: At least one reference index // P,F: | P_DIFF |N| up to 3 times has to be specified. // +-+-+-+-+-+-+-+-+ N=1: An additional P_DIFF follows // current P_DIFF. // size_t RefIndicesLength(const RTPVideoHeaderVP9& hdr) { if (!hdr.inter_pic_predicted || !hdr.flexible_mode) return 0; RTC_DCHECK_GT(hdr.num_ref_pics, 0U); RTC_DCHECK_LE(hdr.num_ref_pics, kMaxVp9RefPics); return hdr.num_ref_pics; } // Scalability structure (SS). // // +-+-+-+-+-+-+-+-+ // V: | N_S |Y|G|-|-|-| // +-+-+-+-+-+-+-+-+ -| // Y: | WIDTH | (OPTIONAL) . // + + . // | | (OPTIONAL) . // +-+-+-+-+-+-+-+-+ . N_S + 1 times // | HEIGHT | (OPTIONAL) . // + + . // | | (OPTIONAL) . // +-+-+-+-+-+-+-+-+ -| // G: | N_G | (OPTIONAL) // +-+-+-+-+-+-+-+-+ -| // N_G: | T |U| R |-|-| (OPTIONAL) . // +-+-+-+-+-+-+-+-+ -| . N_G times // | P_DIFF | (OPTIONAL) . R times . // +-+-+-+-+-+-+-+-+ -| -| // size_t SsDataLength(const RTPVideoHeaderVP9& hdr) { if (!hdr.ss_data_available) return 0; RTC_DCHECK_GT(hdr.num_spatial_layers, 0U); RTC_DCHECK_LE(hdr.num_spatial_layers, kMaxVp9NumberOfSpatialLayers); RTC_DCHECK_LE(hdr.gof.num_frames_in_gof, kMaxVp9FramesInGof); size_t length = 1; // V if (hdr.spatial_layer_resolution_present) { length += 4 * hdr.num_spatial_layers; // Y } if (hdr.gof.num_frames_in_gof > 0) { ++length; // G } // N_G length += hdr.gof.num_frames_in_gof; // T, U, R for (size_t i = 0; i < hdr.gof.num_frames_in_gof; ++i) { RTC_DCHECK_LE(hdr.gof.num_ref_pics[i], kMaxVp9RefPics); length += hdr.gof.num_ref_pics[i]; // R times } return length; } size_t PayloadDescriptorLengthMinusSsData(const RTPVideoHeaderVP9& hdr) { return kFixedPayloadDescriptorBytes + PictureIdLength(hdr) + LayerInfoLength(hdr) + RefIndicesLength(hdr); } size_t PayloadDescriptorLength(const RTPVideoHeaderVP9& hdr) { return PayloadDescriptorLengthMinusSsData(hdr) + SsDataLength(hdr); } void QueuePacket(size_t start_pos, size_t size, bool layer_begin, bool layer_end, RtpPacketizerVp9::PacketInfoQueue* packets) { RtpPacketizerVp9::PacketInfo packet_info; packet_info.payload_start_pos = start_pos; packet_info.size = size; packet_info.layer_begin = layer_begin; packet_info.layer_end = layer_end; packets->push(packet_info); } // Picture ID: // // +-+-+-+-+-+-+-+-+ // I: |M| PICTURE ID | M:0 => picture id is 7 bits. // +-+-+-+-+-+-+-+-+ M:1 => picture id is 15 bits. // M: | EXTENDED PID | // +-+-+-+-+-+-+-+-+ // bool WritePictureId(const RTPVideoHeaderVP9& vp9, rtc::BitBufferWriter* writer) { bool m_bit = (PictureIdLength(vp9) == 2); RETURN_FALSE_ON_ERROR(writer->WriteBits(m_bit ? 1 : 0, 1)); RETURN_FALSE_ON_ERROR(writer->WriteBits(vp9.picture_id, m_bit ? 15 : 7)); return true; } // Layer indices: // // Flexible mode (F=1): // // +-+-+-+-+-+-+-+-+ // L: | T |U| S |D| // +-+-+-+-+-+-+-+-+ // bool WriteLayerInfoFlexibleMode(const RTPVideoHeaderVP9& vp9, rtc::BitBufferWriter* writer) { RETURN_FALSE_ON_ERROR(writer->WriteBits(TemporalIdxField(vp9, 0), 3)); RETURN_FALSE_ON_ERROR(writer->WriteBits(vp9.temporal_up_switch ? 1 : 0, 1)); RETURN_FALSE_ON_ERROR(writer->WriteBits(SpatialIdxField(vp9, 0), 3)); RETURN_FALSE_ON_ERROR(writer->WriteBits(vp9.inter_layer_predicted ? 1: 0, 1)); return true; } // Non-flexible mode (F=0): // // +-+-+-+-+-+-+-+-+ // L: |GOF_IDX| S |D| // +-+-+-+-+-+-+-+-+ // | TL0PICIDX | // +-+-+-+-+-+-+-+-+ // bool WriteLayerInfoNonFlexibleMode(const RTPVideoHeaderVP9& vp9, rtc::BitBufferWriter* writer) { RETURN_FALSE_ON_ERROR(writer->WriteBits(GofIdxField(vp9, 0), 4)); RETURN_FALSE_ON_ERROR(writer->WriteBits(SpatialIdxField(vp9, 0), 3)); RETURN_FALSE_ON_ERROR(writer->WriteBits(vp9.inter_layer_predicted ? 1: 0, 1)); RETURN_FALSE_ON_ERROR(writer->WriteUInt8(Tl0PicIdxField(vp9, 0))); return true; } bool WriteLayerInfo(const RTPVideoHeaderVP9& vp9, rtc::BitBufferWriter* writer) { if (vp9.flexible_mode) { return WriteLayerInfoFlexibleMode(vp9, writer); } else { return WriteLayerInfoNonFlexibleMode(vp9, writer); } } // Reference indices: // // +-+-+-+-+-+-+-+-+ P=1,F=1: At least one reference index // P,F: | P_DIFF |N| up to 3 times has to be specified. // +-+-+-+-+-+-+-+-+ N=1: An additional P_DIFF follows // current P_DIFF. // bool WriteRefIndices(const RTPVideoHeaderVP9& vp9, rtc::BitBufferWriter* writer) { if (!PictureIdPresent(vp9) || vp9.num_ref_pics == 0 || vp9.num_ref_pics > kMaxVp9RefPics) { return false; } for (size_t i = 0; i < vp9.num_ref_pics; ++i) { bool n_bit = !(i == vp9.num_ref_pics - 1); RETURN_FALSE_ON_ERROR(writer->WriteBits(vp9.pid_diff[i], 7)); RETURN_FALSE_ON_ERROR(writer->WriteBits(n_bit ? 1 : 0, 1)); } return true; } // Scalability structure (SS). // // +-+-+-+-+-+-+-+-+ // V: | N_S |Y|G|-|-|-| // +-+-+-+-+-+-+-+-+ -| // Y: | WIDTH | (OPTIONAL) . // + + . // | | (OPTIONAL) . // +-+-+-+-+-+-+-+-+ . N_S + 1 times // | HEIGHT | (OPTIONAL) . // + + . // | | (OPTIONAL) . // +-+-+-+-+-+-+-+-+ -| // G: | N_G | (OPTIONAL) // +-+-+-+-+-+-+-+-+ -| // N_G: | T |U| R |-|-| (OPTIONAL) . // +-+-+-+-+-+-+-+-+ -| . N_G times // | P_DIFF | (OPTIONAL) . R times . // +-+-+-+-+-+-+-+-+ -| -| // bool WriteSsData(const RTPVideoHeaderVP9& vp9, rtc::BitBufferWriter* writer) { RTC_DCHECK_GT(vp9.num_spatial_layers, 0U); RTC_DCHECK_LE(vp9.num_spatial_layers, kMaxVp9NumberOfSpatialLayers); RTC_DCHECK_LE(vp9.gof.num_frames_in_gof, kMaxVp9FramesInGof); bool g_bit = vp9.gof.num_frames_in_gof > 0; RETURN_FALSE_ON_ERROR(writer->WriteBits(vp9.num_spatial_layers - 1, 3)); RETURN_FALSE_ON_ERROR( writer->WriteBits(vp9.spatial_layer_resolution_present ? 1 : 0, 1)); RETURN_FALSE_ON_ERROR(writer->WriteBits(g_bit ? 1 : 0, 1)); // G RETURN_FALSE_ON_ERROR(writer->WriteBits(kReservedBitValue0, 3)); if (vp9.spatial_layer_resolution_present) { for (size_t i = 0; i < vp9.num_spatial_layers; ++i) { RETURN_FALSE_ON_ERROR(writer->WriteUInt16(vp9.width[i])); RETURN_FALSE_ON_ERROR(writer->WriteUInt16(vp9.height[i])); } } if (g_bit) { RETURN_FALSE_ON_ERROR(writer->WriteUInt8(vp9.gof.num_frames_in_gof)); } for (size_t i = 0; i < vp9.gof.num_frames_in_gof; ++i) { RETURN_FALSE_ON_ERROR(writer->WriteBits(vp9.gof.temporal_idx[i], 3)); RETURN_FALSE_ON_ERROR( writer->WriteBits(vp9.gof.temporal_up_switch[i] ? 1 : 0, 1)); RETURN_FALSE_ON_ERROR(writer->WriteBits(vp9.gof.num_ref_pics[i], 2)); RETURN_FALSE_ON_ERROR(writer->WriteBits(kReservedBitValue0, 2)); for (size_t r = 0; r < vp9.gof.num_ref_pics[i]; ++r) { RETURN_FALSE_ON_ERROR(writer->WriteUInt8(vp9.gof.pid_diff[i][r])); } } return true; } // Picture ID: // // +-+-+-+-+-+-+-+-+ // I: |M| PICTURE ID | M:0 => picture id is 7 bits. // +-+-+-+-+-+-+-+-+ M:1 => picture id is 15 bits. // M: | EXTENDED PID | // +-+-+-+-+-+-+-+-+ // bool ParsePictureId(rtc::BitBuffer* parser, RTPVideoHeaderVP9* vp9) { uint32_t picture_id; uint32_t m_bit; RETURN_FALSE_ON_ERROR(parser->ReadBits(&m_bit, 1)); if (m_bit) { RETURN_FALSE_ON_ERROR(parser->ReadBits(&picture_id, 15)); vp9->max_picture_id = kMaxTwoBytePictureId; } else { RETURN_FALSE_ON_ERROR(parser->ReadBits(&picture_id, 7)); vp9->max_picture_id = kMaxOneBytePictureId; } vp9->picture_id = picture_id; return true; } // Layer indices (flexible mode): // // +-+-+-+-+-+-+-+-+ // L: | T |U| S |D| // +-+-+-+-+-+-+-+-+ // bool ParseLayerInfoFlexibleMode(rtc::BitBuffer* parser, RTPVideoHeaderVP9* vp9) { uint32_t t, u_bit, s, d_bit; RETURN_FALSE_ON_ERROR(parser->ReadBits(&t, 3)); RETURN_FALSE_ON_ERROR(parser->ReadBits(&u_bit, 1)); RETURN_FALSE_ON_ERROR(parser->ReadBits(&s, 3)); RETURN_FALSE_ON_ERROR(parser->ReadBits(&d_bit, 1)); vp9->temporal_idx = t; vp9->temporal_up_switch = u_bit ? true : false; vp9->spatial_idx = s; vp9->inter_layer_predicted = d_bit ? true : false; return true; } // Layer indices (non-flexible mode): // // +-+-+-+-+-+-+-+-+ // L: |GOF_IDX| S |D| // +-+-+-+-+-+-+-+-+ // | TL0PICIDX | // +-+-+-+-+-+-+-+-+ // bool ParseLayerInfoNonFlexibleMode(rtc::BitBuffer* parser, RTPVideoHeaderVP9* vp9) { uint32_t gof_idx, s, d_bit; uint8_t tl0picidx; RETURN_FALSE_ON_ERROR(parser->ReadBits(&gof_idx, 4)); RETURN_FALSE_ON_ERROR(parser->ReadBits(&s, 3)); RETURN_FALSE_ON_ERROR(parser->ReadBits(&d_bit, 1)); RETURN_FALSE_ON_ERROR(parser->ReadUInt8(&tl0picidx)); vp9->gof_idx = gof_idx; vp9->spatial_idx = s; vp9->inter_layer_predicted = d_bit ? true : false; vp9->tl0_pic_idx = tl0picidx; return true; } bool ParseLayerInfo(rtc::BitBuffer* parser, RTPVideoHeaderVP9* vp9) { if (vp9->flexible_mode) { return ParseLayerInfoFlexibleMode(parser, vp9); } else { return ParseLayerInfoNonFlexibleMode(parser, vp9); } } // Reference indices: // // +-+-+-+-+-+-+-+-+ P=1,F=1: At least one reference index // P,F: | P_DIFF |N| up to 3 times has to be specified. // +-+-+-+-+-+-+-+-+ N=1: An additional P_DIFF follows // current P_DIFF. // bool ParseRefIndices(rtc::BitBuffer* parser, RTPVideoHeaderVP9* vp9) { if (vp9->picture_id == kNoPictureId) return false; vp9->num_ref_pics = 0; uint32_t n_bit; do { if (vp9->num_ref_pics == kMaxVp9RefPics) return false; uint32_t p_diff; RETURN_FALSE_ON_ERROR(parser->ReadBits(&p_diff, 7)); RETURN_FALSE_ON_ERROR(parser->ReadBits(&n_bit, 1)); vp9->pid_diff[vp9->num_ref_pics] = p_diff; uint32_t scaled_pid = vp9->picture_id; if (p_diff > scaled_pid) { // TODO(asapersson): Max should correspond to the picture id of last wrap. scaled_pid += vp9->max_picture_id + 1; } vp9->ref_picture_id[vp9->num_ref_pics++] = scaled_pid - p_diff; } while (n_bit); return true; } // Scalability structure (SS). // // +-+-+-+-+-+-+-+-+ // V: | N_S |Y|G|-|-|-| // +-+-+-+-+-+-+-+-+ -| // Y: | WIDTH | (OPTIONAL) . // + + . // | | (OPTIONAL) . // +-+-+-+-+-+-+-+-+ . N_S + 1 times // | HEIGHT | (OPTIONAL) . // + + . // | | (OPTIONAL) . // +-+-+-+-+-+-+-+-+ -| // G: | N_G | (OPTIONAL) // +-+-+-+-+-+-+-+-+ -| // N_G: | T |U| R |-|-| (OPTIONAL) . // +-+-+-+-+-+-+-+-+ -| . N_G times // | P_DIFF | (OPTIONAL) . R times . // +-+-+-+-+-+-+-+-+ -| -| // bool ParseSsData(rtc::BitBuffer* parser, RTPVideoHeaderVP9* vp9) { uint32_t n_s, y_bit, g_bit; RETURN_FALSE_ON_ERROR(parser->ReadBits(&n_s, 3)); RETURN_FALSE_ON_ERROR(parser->ReadBits(&y_bit, 1)); RETURN_FALSE_ON_ERROR(parser->ReadBits(&g_bit, 1)); RETURN_FALSE_ON_ERROR(parser->ConsumeBits(3)); vp9->num_spatial_layers = n_s + 1; vp9->spatial_layer_resolution_present = y_bit ? true : false; vp9->gof.num_frames_in_gof = 0; if (y_bit) { for (size_t i = 0; i < vp9->num_spatial_layers; ++i) { RETURN_FALSE_ON_ERROR(parser->ReadUInt16(&vp9->width[i])); RETURN_FALSE_ON_ERROR(parser->ReadUInt16(&vp9->height[i])); } } if (g_bit) { uint8_t n_g; RETURN_FALSE_ON_ERROR(parser->ReadUInt8(&n_g)); vp9->gof.num_frames_in_gof = n_g; } for (size_t i = 0; i < vp9->gof.num_frames_in_gof; ++i) { uint32_t t, u_bit, r; RETURN_FALSE_ON_ERROR(parser->ReadBits(&t, 3)); RETURN_FALSE_ON_ERROR(parser->ReadBits(&u_bit, 1)); RETURN_FALSE_ON_ERROR(parser->ReadBits(&r, 2)); RETURN_FALSE_ON_ERROR(parser->ConsumeBits(2)); vp9->gof.temporal_idx[i] = t; vp9->gof.temporal_up_switch[i] = u_bit ? true : false; vp9->gof.num_ref_pics[i] = r; for (size_t p = 0; p < vp9->gof.num_ref_pics[i]; ++p) { uint8_t p_diff; RETURN_FALSE_ON_ERROR(parser->ReadUInt8(&p_diff)); vp9->gof.pid_diff[i][p] = p_diff; } } return true; } // Gets the size of next payload chunk to send. Returns 0 on error. size_t CalcNextSize(size_t max_length, size_t rem_bytes) { if (max_length == 0 || rem_bytes == 0) { return 0; } if (kBalancedMode) { size_t num_frags = std::ceil(static_cast(rem_bytes) / max_length); return static_cast( static_cast(rem_bytes) / num_frags + 0.5); } return max_length >= rem_bytes ? rem_bytes : max_length; } } // namespace RtpPacketizerVp9::RtpPacketizerVp9(const RTPVideoHeaderVP9& hdr, size_t max_payload_length) : hdr_(hdr), max_payload_length_(max_payload_length), payload_(nullptr), payload_size_(0) { } RtpPacketizerVp9::~RtpPacketizerVp9() { } ProtectionType RtpPacketizerVp9::GetProtectionType() { bool protect = hdr_.temporal_idx == 0 || hdr_.temporal_idx == kNoTemporalIdx; return protect ? kProtectedPacket : kUnprotectedPacket; } StorageType RtpPacketizerVp9::GetStorageType(uint32_t retransmission_settings) { StorageType storage = kAllowRetransmission; if (hdr_.temporal_idx == 0 && !(retransmission_settings & kRetransmitBaseLayer)) { storage = kDontRetransmit; } else if (hdr_.temporal_idx != kNoTemporalIdx && hdr_.temporal_idx > 0 && !(retransmission_settings & kRetransmitHigherLayers)) { storage = kDontRetransmit; } return storage; } std::string RtpPacketizerVp9::ToString() { return "RtpPacketizerVp9"; } void RtpPacketizerVp9::SetPayloadData( const uint8_t* payload, size_t payload_size, const RTPFragmentationHeader* fragmentation) { payload_ = payload; payload_size_ = payload_size; GeneratePackets(); } void RtpPacketizerVp9::GeneratePackets() { if (max_payload_length_ < PayloadDescriptorLength(hdr_) + 1) { LOG(LS_ERROR) << "Payload header and one payload byte won't fit."; return; } size_t bytes_processed = 0; while (bytes_processed < payload_size_) { size_t rem_bytes = payload_size_ - bytes_processed; size_t rem_payload_len = max_payload_length_ - (bytes_processed ? PayloadDescriptorLengthMinusSsData(hdr_) : PayloadDescriptorLength(hdr_)); size_t packet_bytes = CalcNextSize(rem_payload_len, rem_bytes); if (packet_bytes == 0) { LOG(LS_ERROR) << "Failed to generate VP9 packets."; while (!packets_.empty()) packets_.pop(); return; } QueuePacket(bytes_processed, packet_bytes, bytes_processed == 0, rem_bytes == packet_bytes, &packets_); bytes_processed += packet_bytes; } assert(bytes_processed == payload_size_); } bool RtpPacketizerVp9::NextPacket(uint8_t* buffer, size_t* bytes_to_send, bool* last_packet) { if (packets_.empty()) { return false; } PacketInfo packet_info = packets_.front(); packets_.pop(); if (!WriteHeaderAndPayload(packet_info, buffer, bytes_to_send)) { return false; } *last_packet = packets_.empty() && (hdr_.spatial_idx == kNoSpatialIdx || hdr_.spatial_idx == hdr_.num_spatial_layers - 1); return true; } // VP9 format: // // Payload descriptor for F = 1 (flexible mode) // 0 1 2 3 4 5 6 7 // +-+-+-+-+-+-+-+-+ // |I|P|L|F|B|E|V|-| (REQUIRED) // +-+-+-+-+-+-+-+-+ // I: |M| PICTURE ID | (RECOMMENDED) // +-+-+-+-+-+-+-+-+ // M: | EXTENDED PID | (RECOMMENDED) // +-+-+-+-+-+-+-+-+ // L: | T |U| S |D| (CONDITIONALLY RECOMMENDED) // +-+-+-+-+-+-+-+-+ -| // P,F: | P_DIFF |N| (CONDITIONALLY RECOMMENDED) . up to 3 times // +-+-+-+-+-+-+-+-+ -| // V: | SS | // | .. | // +-+-+-+-+-+-+-+-+ // // Payload descriptor for F = 0 (non-flexible mode) // 0 1 2 3 4 5 6 7 // +-+-+-+-+-+-+-+-+ // |I|P|L|F|B|E|V|-| (REQUIRED) // +-+-+-+-+-+-+-+-+ // I: |M| PICTURE ID | (RECOMMENDED) // +-+-+-+-+-+-+-+-+ // M: | EXTENDED PID | (RECOMMENDED) // +-+-+-+-+-+-+-+-+ // L: |GOF_IDX| S |D| (CONDITIONALLY RECOMMENDED) // +-+-+-+-+-+-+-+-+ // | TL0PICIDX | (CONDITIONALLY REQUIRED) // +-+-+-+-+-+-+-+-+ // V: | SS | // | .. | // +-+-+-+-+-+-+-+-+ bool RtpPacketizerVp9::WriteHeaderAndPayload(const PacketInfo& packet_info, uint8_t* buffer, size_t* bytes_to_send) const { size_t header_length; if (!WriteHeader(packet_info, buffer, &header_length)) return false; // Copy payload data. memcpy(&buffer[header_length], &payload_[packet_info.payload_start_pos], packet_info.size); *bytes_to_send = header_length + packet_info.size; return true; } bool RtpPacketizerVp9::WriteHeader(const PacketInfo& packet_info, uint8_t* buffer, size_t* header_length) const { // Required payload descriptor byte. bool i_bit = PictureIdPresent(hdr_); bool p_bit = hdr_.inter_pic_predicted; bool l_bit = LayerInfoPresent(hdr_); bool f_bit = hdr_.flexible_mode; bool b_bit = packet_info.layer_begin; bool e_bit = packet_info.layer_end; bool v_bit = hdr_.ss_data_available && b_bit; rtc::BitBufferWriter writer(buffer, max_payload_length_); RETURN_FALSE_ON_ERROR(writer.WriteBits(i_bit ? 1 : 0, 1)); RETURN_FALSE_ON_ERROR(writer.WriteBits(p_bit ? 1 : 0, 1)); RETURN_FALSE_ON_ERROR(writer.WriteBits(l_bit ? 1 : 0, 1)); RETURN_FALSE_ON_ERROR(writer.WriteBits(f_bit ? 1 : 0, 1)); RETURN_FALSE_ON_ERROR(writer.WriteBits(b_bit ? 1 : 0, 1)); RETURN_FALSE_ON_ERROR(writer.WriteBits(e_bit ? 1 : 0, 1)); RETURN_FALSE_ON_ERROR(writer.WriteBits(v_bit ? 1 : 0, 1)); RETURN_FALSE_ON_ERROR(writer.WriteBits(kReservedBitValue0, 1)); // Add fields that are present. if (i_bit && !WritePictureId(hdr_, &writer)) { LOG(LS_ERROR) << "Failed writing VP9 picture id."; return false; } if (l_bit && !WriteLayerInfo(hdr_, &writer)) { LOG(LS_ERROR) << "Failed writing VP9 layer info."; return false; } if (p_bit && f_bit && !WriteRefIndices(hdr_, &writer)) { LOG(LS_ERROR) << "Failed writing VP9 ref indices."; return false; } if (v_bit && !WriteSsData(hdr_, &writer)) { LOG(LS_ERROR) << "Failed writing VP9 SS data."; return false; } size_t offset_bytes = 0; size_t offset_bits = 0; writer.GetCurrentOffset(&offset_bytes, &offset_bits); assert(offset_bits == 0); *header_length = offset_bytes; return true; } bool RtpDepacketizerVp9::Parse(ParsedPayload* parsed_payload, const uint8_t* payload, size_t payload_length) { assert(parsed_payload != nullptr); if (payload_length == 0) { LOG(LS_ERROR) << "Payload length is zero."; return false; } // Parse mandatory first byte of payload descriptor. rtc::BitBuffer parser(payload, payload_length); uint32_t i_bit, p_bit, l_bit, f_bit, b_bit, e_bit, v_bit; RETURN_FALSE_ON_ERROR(parser.ReadBits(&i_bit, 1)); RETURN_FALSE_ON_ERROR(parser.ReadBits(&p_bit, 1)); RETURN_FALSE_ON_ERROR(parser.ReadBits(&l_bit, 1)); RETURN_FALSE_ON_ERROR(parser.ReadBits(&f_bit, 1)); RETURN_FALSE_ON_ERROR(parser.ReadBits(&b_bit, 1)); RETURN_FALSE_ON_ERROR(parser.ReadBits(&e_bit, 1)); RETURN_FALSE_ON_ERROR(parser.ReadBits(&v_bit, 1)); RETURN_FALSE_ON_ERROR(parser.ConsumeBits(1)); // Parsed payload. parsed_payload->type.Video.width = 0; parsed_payload->type.Video.height = 0; parsed_payload->type.Video.simulcastIdx = 0; parsed_payload->type.Video.codec = kRtpVideoVp9; parsed_payload->frame_type = p_bit ? kVideoFrameDelta : kVideoFrameKey; RTPVideoHeaderVP9* vp9 = &parsed_payload->type.Video.codecHeader.VP9; vp9->InitRTPVideoHeaderVP9(); vp9->inter_pic_predicted = p_bit ? true : false; vp9->flexible_mode = f_bit ? true : false; vp9->beginning_of_frame = b_bit ? true : false; vp9->end_of_frame = e_bit ? true : false; vp9->ss_data_available = v_bit ? true : false; vp9->spatial_idx = 0; // Parse fields that are present. if (i_bit && !ParsePictureId(&parser, vp9)) { LOG(LS_ERROR) << "Failed parsing VP9 picture id."; return false; } if (l_bit && !ParseLayerInfo(&parser, vp9)) { LOG(LS_ERROR) << "Failed parsing VP9 layer info."; return false; } if (p_bit && f_bit && !ParseRefIndices(&parser, vp9)) { LOG(LS_ERROR) << "Failed parsing VP9 ref indices."; return false; } if (v_bit) { if (!ParseSsData(&parser, vp9)) { LOG(LS_ERROR) << "Failed parsing VP9 SS data."; return false; } if (vp9->spatial_layer_resolution_present) { // TODO(asapersson): Add support for spatial layers. parsed_payload->type.Video.width = vp9->width[0]; parsed_payload->type.Video.height = vp9->height[0]; } } parsed_payload->type.Video.isFirstPacket = b_bit && (vp9->spatial_idx == 0); uint64_t rem_bits = parser.RemainingBitCount(); assert(rem_bits % 8 == 0); parsed_payload->payload_length = rem_bits / 8; if (parsed_payload->payload_length == 0) { LOG(LS_ERROR) << "Failed parsing VP9 payload data."; return false; } parsed_payload->payload = payload + payload_length - parsed_payload->payload_length; return true; } } // namespace webrtc