/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef WEBRTC_MODULES_RTP_RTCP_SOURCE_VP8_PARTITION_AGGREGATOR_H_ #define WEBRTC_MODULES_RTP_RTCP_SOURCE_VP8_PARTITION_AGGREGATOR_H_ #include #include "webrtc/base/constructormagic.h" #include "webrtc/modules/include/module_common_types.h" #include "webrtc/typedefs.h" namespace webrtc { // Class used to solve the VP8 aggregation problem. class PartitionTreeNode { public: // Create a tree node. PartitionTreeNode(PartitionTreeNode* parent, const size_t* size_vector, size_t num_partitions, size_t this_size); // Create a root node. static PartitionTreeNode* CreateRootNode(const size_t* size_vector, size_t num_partitions); ~PartitionTreeNode(); // Calculate the cost for the node. If the node is a solution node, the cost // will be the actual cost associated with that solution. If not, the cost // will be the cost accumulated so far along the current branch (which is a // lower bound for any solution along the branch). int Cost(size_t penalty); // Create the two children for this node. bool CreateChildren(size_t max_size); // Get the number of packets for the configuration that this node represents. size_t NumPackets(); // Find the optimal solution given a maximum packet size and a per-packet // penalty. The method will be recursively called while the solver is // probing down the tree of nodes. PartitionTreeNode* GetOptimalNode(size_t max_size, size_t penalty); // Setters and getters. void set_max_parent_size(int size) { max_parent_size_ = size; } void set_min_parent_size(int size) { min_parent_size_ = size; } PartitionTreeNode* parent() const { return parent_; } PartitionTreeNode* left_child() const { return children_[kLeftChild]; } PartitionTreeNode* right_child() const { return children_[kRightChild]; } size_t this_size() const { return this_size_; } bool packet_start() const { return packet_start_; } private: enum Children { kLeftChild = 0, kRightChild = 1 }; int this_size_int() const { return static_cast(this_size_); } void set_packet_start(bool value) { packet_start_ = value; } PartitionTreeNode* parent_; PartitionTreeNode* children_[2]; size_t this_size_; const size_t* size_vector_; size_t num_partitions_; int max_parent_size_; int min_parent_size_; bool packet_start_; RTC_DISALLOW_COPY_AND_ASSIGN(PartitionTreeNode); }; // Class that calculates the optimal aggregation of VP8 partitions smaller than // the maximum packet size. class Vp8PartitionAggregator { public: typedef std::vector ConfigVec; // Constructor. All partitions in the fragmentation header from index // first_partition_idx to last_partition_idx must be smaller than // maximum packet size to be used in FindOptimalConfiguration. Vp8PartitionAggregator(const RTPFragmentationHeader& fragmentation, size_t first_partition_idx, size_t last_partition_idx); ~Vp8PartitionAggregator(); // Set the smallest and largest payload sizes produces so far. void SetPriorMinMax(int min_size, int max_size); // Find the aggregation of VP8 partitions that produces the smallest cost. // The result is given as a vector of the same length as the number of // partitions given to the constructor (i.e., last_partition_idx - // first_partition_idx + 1), where each element indicates the packet index // for that partition. Thus, the output vector starts at 0 and is increasing // up to the number of packets - 1. ConfigVec FindOptimalConfiguration(size_t max_size, size_t penalty); // Calculate minimum and maximum packet sizes for a given aggregation config. // The extreme packet sizes of the given aggregation are compared with the // values given in min_size and max_size, and if either of these are exceeded, // the new extreme value will be written to the corresponding variable. void CalcMinMax(const ConfigVec& config, int* min_size, int* max_size) const; // Calculate the number of fragments to divide a large partition into. // The large partition is of size large_partition_size. The payload must not // be larger than max_payload_size. Each fragment comes at an overhead cost // of penalty bytes. If the size of the fragments fall outside the range // [min_size, max_size], an extra cost is inflicted. static size_t CalcNumberOfFragments(size_t large_partition_size, size_t max_payload_size, size_t penalty, int min_size, int max_size); private: PartitionTreeNode* root_; size_t num_partitions_; size_t* size_vector_; size_t largest_partition_size_; RTC_DISALLOW_COPY_AND_ASSIGN(Vp8PartitionAggregator); }; } // namespace webrtc #endif // WEBRTC_MODULES_RTP_RTCP_SOURCE_VP8_PARTITION_AGGREGATOR_H_