/* * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. * */ #include "webrtc/modules/video_coding/codecs/vp9/vp9_impl.h" #include #include #include #include #include "vpx/vpx_encoder.h" #include "vpx/vpx_decoder.h" #include "vpx/vp8cx.h" #include "vpx/vp8dx.h" #include "webrtc/base/checks.h" #include "webrtc/base/keep_ref_until_done.h" #include "webrtc/base/logging.h" #include "webrtc/base/trace_event.h" #include "webrtc/common.h" #include "webrtc/common_video/libyuv/include/webrtc_libyuv.h" #include "webrtc/modules/include/module_common_types.h" #include "webrtc/modules/video_coding/codecs/vp9/screenshare_layers.h" #include "webrtc/system_wrappers/include/tick_util.h" namespace webrtc { // Only positive speeds, range for real-time coding currently is: 5 - 8. // Lower means slower/better quality, higher means fastest/lower quality. int GetCpuSpeed(int width, int height) { #if defined(WEBRTC_ARCH_ARM) || defined(WEBRTC_ARCH_ARM64) return 8; #else // For smaller resolutions, use lower speed setting (get some coding gain at // the cost of increased encoding complexity). if (width * height <= 352 * 288) return 5; else return 7; #endif } VP9Encoder* VP9Encoder::Create() { return new VP9EncoderImpl(); } void VP9EncoderImpl::EncoderOutputCodedPacketCallback(vpx_codec_cx_pkt* pkt, void* user_data) { VP9EncoderImpl* enc = static_cast(user_data); enc->GetEncodedLayerFrame(pkt); } VP9EncoderImpl::VP9EncoderImpl() : encoded_image_(), encoded_complete_callback_(NULL), inited_(false), timestamp_(0), picture_id_(0), cpu_speed_(3), rc_max_intra_target_(0), encoder_(NULL), config_(NULL), raw_(NULL), input_image_(NULL), tl0_pic_idx_(0), frames_since_kf_(0), num_temporal_layers_(0), num_spatial_layers_(0), frames_encoded_(0), // Use two spatial when screensharing with flexible mode. spatial_layer_(new ScreenshareLayersVP9(2)) { memset(&codec_, 0, sizeof(codec_)); uint32_t seed = static_cast(TickTime::MillisecondTimestamp()); srand(seed); } VP9EncoderImpl::~VP9EncoderImpl() { Release(); } int VP9EncoderImpl::Release() { if (encoded_image_._buffer != NULL) { delete[] encoded_image_._buffer; encoded_image_._buffer = NULL; } if (encoder_ != NULL) { if (vpx_codec_destroy(encoder_)) { return WEBRTC_VIDEO_CODEC_MEMORY; } delete encoder_; encoder_ = NULL; } if (config_ != NULL) { delete config_; config_ = NULL; } if (raw_ != NULL) { vpx_img_free(raw_); raw_ = NULL; } inited_ = false; return WEBRTC_VIDEO_CODEC_OK; } bool VP9EncoderImpl::ExplicitlyConfiguredSpatialLayers() const { // We check target_bitrate_bps of the 0th layer to see if the spatial layers // (i.e. bitrates) were explicitly configured. return num_spatial_layers_ > 1 && codec_.spatialLayers[0].target_bitrate_bps > 0; } bool VP9EncoderImpl::SetSvcRates() { uint8_t i = 0; if (ExplicitlyConfiguredSpatialLayers()) { if (num_temporal_layers_ > 1) { LOG(LS_ERROR) << "Multiple temporal layers when manually specifying " "spatial layers not implemented yet!"; return false; } int total_bitrate_bps = 0; for (i = 0; i < num_spatial_layers_; ++i) total_bitrate_bps += codec_.spatialLayers[i].target_bitrate_bps; // If total bitrate differs now from what has been specified at the // beginning, update the bitrates in the same ratio as before. for (i = 0; i < num_spatial_layers_; ++i) { config_->ss_target_bitrate[i] = config_->layer_target_bitrate[i] = static_cast(static_cast(config_->rc_target_bitrate) * codec_.spatialLayers[i].target_bitrate_bps / total_bitrate_bps); } } else { float rate_ratio[VPX_MAX_LAYERS] = {0}; float total = 0; for (i = 0; i < num_spatial_layers_; ++i) { if (svc_internal_.svc_params.scaling_factor_num[i] <= 0 || svc_internal_.svc_params.scaling_factor_den[i] <= 0) { LOG(LS_ERROR) << "Scaling factors not specified!"; return false; } rate_ratio[i] = static_cast(svc_internal_.svc_params.scaling_factor_num[i]) / svc_internal_.svc_params.scaling_factor_den[i]; total += rate_ratio[i]; } for (i = 0; i < num_spatial_layers_; ++i) { config_->ss_target_bitrate[i] = static_cast( config_->rc_target_bitrate * rate_ratio[i] / total); if (num_temporal_layers_ == 1) { config_->layer_target_bitrate[i] = config_->ss_target_bitrate[i]; } else if (num_temporal_layers_ == 2) { config_->layer_target_bitrate[i * num_temporal_layers_] = config_->ss_target_bitrate[i] * 2 / 3; config_->layer_target_bitrate[i * num_temporal_layers_ + 1] = config_->ss_target_bitrate[i]; } else if (num_temporal_layers_ == 3) { config_->layer_target_bitrate[i * num_temporal_layers_] = config_->ss_target_bitrate[i] / 2; config_->layer_target_bitrate[i * num_temporal_layers_ + 1] = config_->layer_target_bitrate[i * num_temporal_layers_] + (config_->ss_target_bitrate[i] / 4); config_->layer_target_bitrate[i * num_temporal_layers_ + 2] = config_->ss_target_bitrate[i]; } else { LOG(LS_ERROR) << "Unsupported number of temporal layers: " << num_temporal_layers_; return false; } } } // For now, temporal layers only supported when having one spatial layer. if (num_spatial_layers_ == 1) { for (i = 0; i < num_temporal_layers_; ++i) { config_->ts_target_bitrate[i] = config_->layer_target_bitrate[i]; } } return true; } int VP9EncoderImpl::SetRates(uint32_t new_bitrate_kbit, uint32_t new_framerate) { if (!inited_) { return WEBRTC_VIDEO_CODEC_UNINITIALIZED; } if (encoder_->err) { return WEBRTC_VIDEO_CODEC_ERROR; } if (new_framerate < 1) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } // Update bit rate if (codec_.maxBitrate > 0 && new_bitrate_kbit > codec_.maxBitrate) { new_bitrate_kbit = codec_.maxBitrate; } config_->rc_target_bitrate = new_bitrate_kbit; codec_.maxFramerate = new_framerate; spatial_layer_->ConfigureBitrate(new_bitrate_kbit, 0); if (!SetSvcRates()) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } // Update encoder context if (vpx_codec_enc_config_set(encoder_, config_)) { return WEBRTC_VIDEO_CODEC_ERROR; } return WEBRTC_VIDEO_CODEC_OK; } int VP9EncoderImpl::InitEncode(const VideoCodec* inst, int number_of_cores, size_t /*max_payload_size*/) { if (inst == NULL) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } if (inst->maxFramerate < 1) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } // Allow zero to represent an unspecified maxBitRate if (inst->maxBitrate > 0 && inst->startBitrate > inst->maxBitrate) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } if (inst->width < 1 || inst->height < 1) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } if (number_of_cores < 1) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } if (inst->codecSpecific.VP9.numberOfTemporalLayers > 3) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } // libvpx currently supports only one or two spatial layers. if (inst->codecSpecific.VP9.numberOfSpatialLayers > 2) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } int retVal = Release(); if (retVal < 0) { return retVal; } if (encoder_ == NULL) { encoder_ = new vpx_codec_ctx_t; } if (config_ == NULL) { config_ = new vpx_codec_enc_cfg_t; } timestamp_ = 0; if (&codec_ != inst) { codec_ = *inst; } num_spatial_layers_ = inst->codecSpecific.VP9.numberOfSpatialLayers; num_temporal_layers_ = inst->codecSpecific.VP9.numberOfTemporalLayers; if (num_temporal_layers_ == 0) num_temporal_layers_ = 1; // Random start 16 bits is enough. picture_id_ = static_cast(rand()) & 0x7FFF; // NOLINT // Allocate memory for encoded image if (encoded_image_._buffer != NULL) { delete[] encoded_image_._buffer; } encoded_image_._size = CalcBufferSize(kI420, codec_.width, codec_.height); encoded_image_._buffer = new uint8_t[encoded_image_._size]; encoded_image_._completeFrame = true; // Creating a wrapper to the image - setting image data to NULL. Actual // pointer will be set in encode. Setting align to 1, as it is meaningless // (actual memory is not allocated). raw_ = vpx_img_wrap(NULL, VPX_IMG_FMT_I420, codec_.width, codec_.height, 1, NULL); // Populate encoder configuration with default values. if (vpx_codec_enc_config_default(vpx_codec_vp9_cx(), config_, 0)) { return WEBRTC_VIDEO_CODEC_ERROR; } config_->g_w = codec_.width; config_->g_h = codec_.height; config_->rc_target_bitrate = inst->startBitrate; // in kbit/s config_->g_error_resilient = 1; // Setting the time base of the codec. config_->g_timebase.num = 1; config_->g_timebase.den = 90000; config_->g_lag_in_frames = 0; // 0- no frame lagging config_->g_threads = 1; // Rate control settings. config_->rc_dropframe_thresh = inst->codecSpecific.VP9.frameDroppingOn ? 30 : 0; config_->rc_end_usage = VPX_CBR; config_->g_pass = VPX_RC_ONE_PASS; config_->rc_min_quantizer = 2; config_->rc_max_quantizer = 52; config_->rc_undershoot_pct = 50; config_->rc_overshoot_pct = 50; config_->rc_buf_initial_sz = 500; config_->rc_buf_optimal_sz = 600; config_->rc_buf_sz = 1000; // Set the maximum target size of any key-frame. rc_max_intra_target_ = MaxIntraTarget(config_->rc_buf_optimal_sz); if (inst->codecSpecific.VP9.keyFrameInterval > 0) { config_->kf_mode = VPX_KF_AUTO; config_->kf_max_dist = inst->codecSpecific.VP9.keyFrameInterval; // Needs to be set (in svc mode) to get correct periodic key frame interval // (will have no effect in non-svc). config_->kf_min_dist = config_->kf_max_dist; } else { config_->kf_mode = VPX_KF_DISABLED; } config_->rc_resize_allowed = inst->codecSpecific.VP9.automaticResizeOn ? 1 : 0; // Determine number of threads based on the image size and #cores. config_->g_threads = NumberOfThreads(config_->g_w, config_->g_h, number_of_cores); cpu_speed_ = GetCpuSpeed(config_->g_w, config_->g_h); // TODO(asapersson): Check configuration of temporal switch up and increase // pattern length. is_flexible_mode_ = inst->codecSpecific.VP9.flexibleMode; if (is_flexible_mode_) { config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_BYPASS; config_->ts_number_layers = num_temporal_layers_; if (codec_.mode == kScreensharing) spatial_layer_->ConfigureBitrate(inst->startBitrate, 0); } else if (num_temporal_layers_ == 1) { gof_.SetGofInfoVP9(kTemporalStructureMode1); config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING; config_->ts_number_layers = 1; config_->ts_rate_decimator[0] = 1; config_->ts_periodicity = 1; config_->ts_layer_id[0] = 0; } else if (num_temporal_layers_ == 2) { gof_.SetGofInfoVP9(kTemporalStructureMode2); config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_0101; config_->ts_number_layers = 2; config_->ts_rate_decimator[0] = 2; config_->ts_rate_decimator[1] = 1; config_->ts_periodicity = 2; config_->ts_layer_id[0] = 0; config_->ts_layer_id[1] = 1; } else if (num_temporal_layers_ == 3) { gof_.SetGofInfoVP9(kTemporalStructureMode3); config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_0212; config_->ts_number_layers = 3; config_->ts_rate_decimator[0] = 4; config_->ts_rate_decimator[1] = 2; config_->ts_rate_decimator[2] = 1; config_->ts_periodicity = 4; config_->ts_layer_id[0] = 0; config_->ts_layer_id[1] = 2; config_->ts_layer_id[2] = 1; config_->ts_layer_id[3] = 2; } else { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } tl0_pic_idx_ = static_cast(rand()); // NOLINT return InitAndSetControlSettings(inst); } int VP9EncoderImpl::NumberOfThreads(int width, int height, int number_of_cores) { // Keep the number of encoder threads equal to the possible number of column // tiles, which is (1, 2, 4, 8). See comments below for VP9E_SET_TILE_COLUMNS. if (width * height >= 1280 * 720 && number_of_cores > 4) { return 4; } else if (width * height >= 640 * 480 && number_of_cores > 2) { return 2; } else { // 1 thread less than VGA. return 1; } } int VP9EncoderImpl::InitAndSetControlSettings(const VideoCodec* inst) { // Set QP-min/max per spatial and temporal layer. int tot_num_layers = num_spatial_layers_ * num_temporal_layers_; for (int i = 0; i < tot_num_layers; ++i) { svc_internal_.svc_params.max_quantizers[i] = config_->rc_max_quantizer; svc_internal_.svc_params.min_quantizers[i] = config_->rc_min_quantizer; } config_->ss_number_layers = num_spatial_layers_; if (ExplicitlyConfiguredSpatialLayers()) { for (int i = 0; i < num_spatial_layers_; ++i) { const auto& layer = codec_.spatialLayers[i]; svc_internal_.svc_params.scaling_factor_num[i] = layer.scaling_factor_num; svc_internal_.svc_params.scaling_factor_den[i] = layer.scaling_factor_den; } } else { int scaling_factor_num = 256; for (int i = num_spatial_layers_ - 1; i >= 0; --i) { // 1:2 scaling in each dimension. svc_internal_.svc_params.scaling_factor_num[i] = scaling_factor_num; svc_internal_.svc_params.scaling_factor_den[i] = 256; if (codec_.mode != kScreensharing) scaling_factor_num /= 2; } } if (!SetSvcRates()) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } if (vpx_codec_enc_init(encoder_, vpx_codec_vp9_cx(), config_, 0)) { return WEBRTC_VIDEO_CODEC_UNINITIALIZED; } vpx_codec_control(encoder_, VP8E_SET_CPUUSED, cpu_speed_); vpx_codec_control(encoder_, VP8E_SET_MAX_INTRA_BITRATE_PCT, rc_max_intra_target_); vpx_codec_control(encoder_, VP9E_SET_AQ_MODE, inst->codecSpecific.VP9.adaptiveQpMode ? 3 : 0); vpx_codec_control( encoder_, VP9E_SET_SVC, (num_temporal_layers_ > 1 || num_spatial_layers_ > 1) ? 1 : 0); if (num_temporal_layers_ > 1 || num_spatial_layers_ > 1) { vpx_codec_control(encoder_, VP9E_SET_SVC_PARAMETERS, &svc_internal_.svc_params); } // Register callback for getting each spatial layer. vpx_codec_priv_output_cx_pkt_cb_pair_t cbp = { VP9EncoderImpl::EncoderOutputCodedPacketCallback, reinterpret_cast(this)}; vpx_codec_control(encoder_, VP9E_REGISTER_CX_CALLBACK, reinterpret_cast(&cbp)); // Control function to set the number of column tiles in encoding a frame, in // log2 unit: e.g., 0 = 1 tile column, 1 = 2 tile columns, 2 = 4 tile columns. // The number tile columns will be capped by the encoder based on image size // (minimum width of tile column is 256 pixels, maximum is 4096). vpx_codec_control(encoder_, VP9E_SET_TILE_COLUMNS, (config_->g_threads >> 1)); #if !defined(WEBRTC_ARCH_ARM) && !defined(WEBRTC_ARCH_ARM64) // Note denoiser is still off by default until further testing/optimization, // i.e., codecSpecific.VP9.denoisingOn == 0. vpx_codec_control(encoder_, VP9E_SET_NOISE_SENSITIVITY, inst->codecSpecific.VP9.denoisingOn ? 1 : 0); #endif if (codec_.mode == kScreensharing) { // Adjust internal parameters to screen content. vpx_codec_control(encoder_, VP9E_SET_TUNE_CONTENT, 1); } // Enable encoder skip of static/low content blocks. vpx_codec_control(encoder_, VP8E_SET_STATIC_THRESHOLD, 1); inited_ = true; return WEBRTC_VIDEO_CODEC_OK; } uint32_t VP9EncoderImpl::MaxIntraTarget(uint32_t optimal_buffer_size) { // Set max to the optimal buffer level (normalized by target BR), // and scaled by a scale_par. // Max target size = scale_par * optimal_buffer_size * targetBR[Kbps]. // This value is presented in percentage of perFrameBw: // perFrameBw = targetBR[Kbps] * 1000 / framerate. // The target in % is as follows: float scale_par = 0.5; uint32_t target_pct = optimal_buffer_size * scale_par * codec_.maxFramerate / 10; // Don't go below 3 times the per frame bandwidth. const uint32_t min_intra_size = 300; return (target_pct < min_intra_size) ? min_intra_size : target_pct; } int VP9EncoderImpl::Encode(const VideoFrame& input_image, const CodecSpecificInfo* codec_specific_info, const std::vector* frame_types) { if (!inited_) { return WEBRTC_VIDEO_CODEC_UNINITIALIZED; } if (input_image.IsZeroSize()) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } if (encoded_complete_callback_ == NULL) { return WEBRTC_VIDEO_CODEC_UNINITIALIZED; } FrameType frame_type = kVideoFrameDelta; // We only support one stream at the moment. if (frame_types && frame_types->size() > 0) { frame_type = (*frame_types)[0]; } RTC_DCHECK_EQ(input_image.width(), static_cast(raw_->d_w)); RTC_DCHECK_EQ(input_image.height(), static_cast(raw_->d_h)); // Set input image for use in the callback. // This was necessary since you need some information from input_image. // You can save only the necessary information (such as timestamp) instead of // doing this. input_image_ = &input_image; // Image in vpx_image_t format. // Input image is const. VPX's raw image is not defined as const. raw_->planes[VPX_PLANE_Y] = const_cast(input_image.buffer(kYPlane)); raw_->planes[VPX_PLANE_U] = const_cast(input_image.buffer(kUPlane)); raw_->planes[VPX_PLANE_V] = const_cast(input_image.buffer(kVPlane)); raw_->stride[VPX_PLANE_Y] = input_image.stride(kYPlane); raw_->stride[VPX_PLANE_U] = input_image.stride(kUPlane); raw_->stride[VPX_PLANE_V] = input_image.stride(kVPlane); vpx_enc_frame_flags_t flags = 0; bool send_keyframe = (frame_type == kVideoFrameKey); if (send_keyframe) { // Key frame request from caller. flags = VPX_EFLAG_FORCE_KF; } if (is_flexible_mode_) { SuperFrameRefSettings settings; // These structs are copied when calling vpx_codec_control, // therefore it is ok for them to go out of scope. vpx_svc_ref_frame_config enc_layer_conf; vpx_svc_layer_id layer_id; if (codec_.mode == kRealtimeVideo) { // Real time video not yet implemented in flexible mode. RTC_NOTREACHED(); } else { settings = spatial_layer_->GetSuperFrameSettings(input_image.timestamp(), send_keyframe); } enc_layer_conf = GenerateRefsAndFlags(settings); layer_id.temporal_layer_id = 0; layer_id.spatial_layer_id = settings.start_layer; vpx_codec_control(encoder_, VP9E_SET_SVC_LAYER_ID, &layer_id); vpx_codec_control(encoder_, VP9E_SET_SVC_REF_FRAME_CONFIG, &enc_layer_conf); } assert(codec_.maxFramerate > 0); uint32_t duration = 90000 / codec_.maxFramerate; if (vpx_codec_encode(encoder_, raw_, timestamp_, duration, flags, VPX_DL_REALTIME)) { return WEBRTC_VIDEO_CODEC_ERROR; } timestamp_ += duration; return WEBRTC_VIDEO_CODEC_OK; } void VP9EncoderImpl::PopulateCodecSpecific(CodecSpecificInfo* codec_specific, const vpx_codec_cx_pkt& pkt, uint32_t timestamp) { assert(codec_specific != NULL); codec_specific->codecType = kVideoCodecVP9; CodecSpecificInfoVP9* vp9_info = &(codec_specific->codecSpecific.VP9); // TODO(asapersson): Set correct value. vp9_info->inter_pic_predicted = (pkt.data.frame.flags & VPX_FRAME_IS_KEY) ? false : true; vp9_info->flexible_mode = codec_.codecSpecific.VP9.flexibleMode; vp9_info->ss_data_available = ((pkt.data.frame.flags & VPX_FRAME_IS_KEY) && !codec_.codecSpecific.VP9.flexibleMode) ? true : false; vpx_svc_layer_id_t layer_id = {0}; vpx_codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id); assert(num_temporal_layers_ > 0); assert(num_spatial_layers_ > 0); if (num_temporal_layers_ == 1) { assert(layer_id.temporal_layer_id == 0); vp9_info->temporal_idx = kNoTemporalIdx; } else { vp9_info->temporal_idx = layer_id.temporal_layer_id; } if (num_spatial_layers_ == 1) { assert(layer_id.spatial_layer_id == 0); vp9_info->spatial_idx = kNoSpatialIdx; } else { vp9_info->spatial_idx = layer_id.spatial_layer_id; } if (layer_id.spatial_layer_id != 0) { vp9_info->ss_data_available = false; } // TODO(asapersson): this info has to be obtained from the encoder. vp9_info->temporal_up_switch = false; bool is_first_frame = false; if (is_flexible_mode_) { is_first_frame = layer_id.spatial_layer_id == spatial_layer_->GetStartLayer(); } else { is_first_frame = layer_id.spatial_layer_id == 0; } if (is_first_frame) { picture_id_ = (picture_id_ + 1) & 0x7FFF; // TODO(asapersson): this info has to be obtained from the encoder. vp9_info->inter_layer_predicted = false; ++frames_since_kf_; } else { // TODO(asapersson): this info has to be obtained from the encoder. vp9_info->inter_layer_predicted = true; } if (pkt.data.frame.flags & VPX_FRAME_IS_KEY) { frames_since_kf_ = 0; } vp9_info->picture_id = picture_id_; if (!vp9_info->flexible_mode) { if (layer_id.temporal_layer_id == 0 && layer_id.spatial_layer_id == 0) { tl0_pic_idx_++; } vp9_info->tl0_pic_idx = tl0_pic_idx_; } // Always populate this, so that the packetizer can properly set the marker // bit. vp9_info->num_spatial_layers = num_spatial_layers_; vp9_info->num_ref_pics = 0; if (vp9_info->flexible_mode) { vp9_info->gof_idx = kNoGofIdx; vp9_info->num_ref_pics = num_ref_pics_[layer_id.spatial_layer_id]; for (int i = 0; i < num_ref_pics_[layer_id.spatial_layer_id]; ++i) { vp9_info->p_diff[i] = p_diff_[layer_id.spatial_layer_id][i]; } } else { vp9_info->gof_idx = static_cast(frames_since_kf_ % gof_.num_frames_in_gof); vp9_info->temporal_up_switch = gof_.temporal_up_switch[vp9_info->gof_idx]; } if (vp9_info->ss_data_available) { vp9_info->spatial_layer_resolution_present = true; for (size_t i = 0; i < vp9_info->num_spatial_layers; ++i) { vp9_info->width[i] = codec_.width * svc_internal_.svc_params.scaling_factor_num[i] / svc_internal_.svc_params.scaling_factor_den[i]; vp9_info->height[i] = codec_.height * svc_internal_.svc_params.scaling_factor_num[i] / svc_internal_.svc_params.scaling_factor_den[i]; } if (!vp9_info->flexible_mode) { vp9_info->gof.CopyGofInfoVP9(gof_); } } } int VP9EncoderImpl::GetEncodedLayerFrame(const vpx_codec_cx_pkt* pkt) { encoded_image_._length = 0; encoded_image_._frameType = kVideoFrameDelta; RTPFragmentationHeader frag_info; // Note: no data partitioning in VP9, so 1 partition only. We keep this // fragmentation data for now, until VP9 packetizer is implemented. frag_info.VerifyAndAllocateFragmentationHeader(1); int part_idx = 0; CodecSpecificInfo codec_specific; assert(pkt->kind == VPX_CODEC_CX_FRAME_PKT); memcpy(&encoded_image_._buffer[encoded_image_._length], pkt->data.frame.buf, pkt->data.frame.sz); frag_info.fragmentationOffset[part_idx] = encoded_image_._length; frag_info.fragmentationLength[part_idx] = static_cast(pkt->data.frame.sz); frag_info.fragmentationPlType[part_idx] = 0; frag_info.fragmentationTimeDiff[part_idx] = 0; encoded_image_._length += static_cast(pkt->data.frame.sz); vpx_svc_layer_id_t layer_id = {0}; vpx_codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id); if (is_flexible_mode_ && codec_.mode == kScreensharing) spatial_layer_->LayerFrameEncoded( static_cast(encoded_image_._length), layer_id.spatial_layer_id); assert(encoded_image_._length <= encoded_image_._size); // End of frame. // Check if encoded frame is a key frame. if (pkt->data.frame.flags & VPX_FRAME_IS_KEY) { encoded_image_._frameType = kVideoFrameKey; } PopulateCodecSpecific(&codec_specific, *pkt, input_image_->timestamp()); if (encoded_image_._length > 0) { TRACE_COUNTER1("webrtc", "EncodedFrameSize", encoded_image_._length); encoded_image_._timeStamp = input_image_->timestamp(); encoded_image_.capture_time_ms_ = input_image_->render_time_ms(); encoded_image_._encodedHeight = raw_->d_h; encoded_image_._encodedWidth = raw_->d_w; encoded_complete_callback_->Encoded(encoded_image_, &codec_specific, &frag_info); } return WEBRTC_VIDEO_CODEC_OK; } vpx_svc_ref_frame_config VP9EncoderImpl::GenerateRefsAndFlags( const SuperFrameRefSettings& settings) { static const vpx_enc_frame_flags_t kAllFlags = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_GF; vpx_svc_ref_frame_config sf_conf = {}; if (settings.is_keyframe) { // Used later on to make sure we don't make any invalid references. memset(buffer_updated_at_frame_, -1, sizeof(buffer_updated_at_frame_)); for (int layer = settings.start_layer; layer <= settings.stop_layer; ++layer) { num_ref_pics_[layer] = 0; buffer_updated_at_frame_[settings.layer[layer].upd_buf] = frames_encoded_; // When encoding a keyframe only the alt_fb_idx is used // to specify which layer ends up in which buffer. sf_conf.alt_fb_idx[layer] = settings.layer[layer].upd_buf; } } else { for (int layer_idx = settings.start_layer; layer_idx <= settings.stop_layer; ++layer_idx) { vpx_enc_frame_flags_t layer_flags = kAllFlags; num_ref_pics_[layer_idx] = 0; int8_t refs[3] = {settings.layer[layer_idx].ref_buf1, settings.layer[layer_idx].ref_buf2, settings.layer[layer_idx].ref_buf3}; for (unsigned int ref_idx = 0; ref_idx < kMaxVp9RefPics; ++ref_idx) { if (refs[ref_idx] == -1) continue; RTC_DCHECK_GE(refs[ref_idx], 0); RTC_DCHECK_LE(refs[ref_idx], 7); // Easier to remove flags from all flags rather than having to // build the flags from 0. switch (num_ref_pics_[layer_idx]) { case 0: { sf_conf.lst_fb_idx[layer_idx] = refs[ref_idx]; layer_flags &= ~VP8_EFLAG_NO_REF_LAST; break; } case 1: { sf_conf.gld_fb_idx[layer_idx] = refs[ref_idx]; layer_flags &= ~VP8_EFLAG_NO_REF_GF; break; } case 2: { sf_conf.alt_fb_idx[layer_idx] = refs[ref_idx]; layer_flags &= ~VP8_EFLAG_NO_REF_ARF; break; } } // Make sure we don't reference a buffer that hasn't been // used at all or hasn't been used since a keyframe. RTC_DCHECK_NE(buffer_updated_at_frame_[refs[ref_idx]], -1); p_diff_[layer_idx][num_ref_pics_[layer_idx]] = frames_encoded_ - buffer_updated_at_frame_[refs[ref_idx]]; num_ref_pics_[layer_idx]++; } bool upd_buf_same_as_a_ref = false; if (settings.layer[layer_idx].upd_buf != -1) { for (unsigned int ref_idx = 0; ref_idx < kMaxVp9RefPics; ++ref_idx) { if (settings.layer[layer_idx].upd_buf == refs[ref_idx]) { switch (ref_idx) { case 0: { layer_flags &= ~VP8_EFLAG_NO_UPD_LAST; break; } case 1: { layer_flags &= ~VP8_EFLAG_NO_UPD_GF; break; } case 2: { layer_flags &= ~VP8_EFLAG_NO_UPD_ARF; break; } } upd_buf_same_as_a_ref = true; break; } } if (!upd_buf_same_as_a_ref) { // If we have three references and a buffer is specified to be // updated, then that buffer must be the same as one of the // three references. RTC_CHECK_LT(num_ref_pics_[layer_idx], kMaxVp9RefPics); sf_conf.alt_fb_idx[layer_idx] = settings.layer[layer_idx].upd_buf; layer_flags ^= VP8_EFLAG_NO_UPD_ARF; } int updated_buffer = settings.layer[layer_idx].upd_buf; buffer_updated_at_frame_[updated_buffer] = frames_encoded_; sf_conf.frame_flags[layer_idx] = layer_flags; } } } ++frames_encoded_; return sf_conf; } int VP9EncoderImpl::SetChannelParameters(uint32_t packet_loss, int64_t rtt) { return WEBRTC_VIDEO_CODEC_OK; } int VP9EncoderImpl::RegisterEncodeCompleteCallback( EncodedImageCallback* callback) { encoded_complete_callback_ = callback; return WEBRTC_VIDEO_CODEC_OK; } const char* VP9EncoderImpl::ImplementationName() const { return "libvpx"; } VP9Decoder* VP9Decoder::Create() { return new VP9DecoderImpl(); } VP9DecoderImpl::VP9DecoderImpl() : decode_complete_callback_(NULL), inited_(false), decoder_(NULL), key_frame_required_(true) { memset(&codec_, 0, sizeof(codec_)); } VP9DecoderImpl::~VP9DecoderImpl() { inited_ = true; // in order to do the actual release Release(); int num_buffers_in_use = frame_buffer_pool_.GetNumBuffersInUse(); if (num_buffers_in_use > 0) { // The frame buffers are reference counted and frames are exposed after // decoding. There may be valid usage cases where previous frames are still // referenced after ~VP9DecoderImpl that is not a leak. LOG(LS_INFO) << num_buffers_in_use << " Vp9FrameBuffers are still " << "referenced during ~VP9DecoderImpl."; } } int VP9DecoderImpl::Reset() { if (!inited_) { return WEBRTC_VIDEO_CODEC_UNINITIALIZED; } InitDecode(&codec_, 1); return WEBRTC_VIDEO_CODEC_OK; } int VP9DecoderImpl::InitDecode(const VideoCodec* inst, int number_of_cores) { if (inst == NULL) { return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; } int ret_val = Release(); if (ret_val < 0) { return ret_val; } if (decoder_ == NULL) { decoder_ = new vpx_codec_ctx_t; } vpx_codec_dec_cfg_t cfg; // Setting number of threads to a constant value (1) cfg.threads = 1; cfg.h = cfg.w = 0; // set after decode vpx_codec_flags_t flags = 0; if (vpx_codec_dec_init(decoder_, vpx_codec_vp9_dx(), &cfg, flags)) { return WEBRTC_VIDEO_CODEC_MEMORY; } if (&codec_ != inst) { // Save VideoCodec instance for later; mainly for duplicating the decoder. codec_ = *inst; } if (!frame_buffer_pool_.InitializeVpxUsePool(decoder_)) { return WEBRTC_VIDEO_CODEC_MEMORY; } inited_ = true; // Always start with a complete key frame. key_frame_required_ = true; return WEBRTC_VIDEO_CODEC_OK; } int VP9DecoderImpl::Decode(const EncodedImage& input_image, bool missing_frames, const RTPFragmentationHeader* fragmentation, const CodecSpecificInfo* codec_specific_info, int64_t /*render_time_ms*/) { if (!inited_) { return WEBRTC_VIDEO_CODEC_UNINITIALIZED; } if (decode_complete_callback_ == NULL) { return WEBRTC_VIDEO_CODEC_UNINITIALIZED; } // Always start with a complete key frame. if (key_frame_required_) { if (input_image._frameType != kVideoFrameKey) return WEBRTC_VIDEO_CODEC_ERROR; // We have a key frame - is it complete? if (input_image._completeFrame) { key_frame_required_ = false; } else { return WEBRTC_VIDEO_CODEC_ERROR; } } vpx_codec_iter_t iter = NULL; vpx_image_t* img; uint8_t* buffer = input_image._buffer; if (input_image._length == 0) { buffer = NULL; // Triggers full frame concealment. } // During decode libvpx may get and release buffers from |frame_buffer_pool_|. // In practice libvpx keeps a few (~3-4) buffers alive at a time. if (vpx_codec_decode(decoder_, buffer, static_cast(input_image._length), 0, VPX_DL_REALTIME)) { return WEBRTC_VIDEO_CODEC_ERROR; } // |img->fb_priv| contains the image data, a reference counted Vp9FrameBuffer. // It may be released by libvpx during future vpx_codec_decode or // vpx_codec_destroy calls. img = vpx_codec_get_frame(decoder_, &iter); int ret = ReturnFrame(img, input_image._timeStamp); if (ret != 0) { return ret; } return WEBRTC_VIDEO_CODEC_OK; } int VP9DecoderImpl::ReturnFrame(const vpx_image_t* img, uint32_t timestamp) { if (img == NULL) { // Decoder OK and NULL image => No show frame. return WEBRTC_VIDEO_CODEC_NO_OUTPUT; } // This buffer contains all of |img|'s image data, a reference counted // Vp9FrameBuffer. (libvpx is done with the buffers after a few // vpx_codec_decode calls or vpx_codec_destroy). Vp9FrameBufferPool::Vp9FrameBuffer* img_buffer = static_cast(img->fb_priv); // The buffer can be used directly by the VideoFrame (without copy) by // using a WrappedI420Buffer. rtc::scoped_refptr img_wrapped_buffer( new rtc::RefCountedObject( img->d_w, img->d_h, img->planes[VPX_PLANE_Y], img->stride[VPX_PLANE_Y], img->planes[VPX_PLANE_U], img->stride[VPX_PLANE_U], img->planes[VPX_PLANE_V], img->stride[VPX_PLANE_V], // WrappedI420Buffer's mechanism for allowing the release of its frame // buffer is through a callback function. This is where we should // release |img_buffer|. rtc::KeepRefUntilDone(img_buffer))); VideoFrame decoded_image; decoded_image.set_video_frame_buffer(img_wrapped_buffer); decoded_image.set_timestamp(timestamp); int ret = decode_complete_callback_->Decoded(decoded_image); if (ret != 0) return ret; return WEBRTC_VIDEO_CODEC_OK; } int VP9DecoderImpl::RegisterDecodeCompleteCallback( DecodedImageCallback* callback) { decode_complete_callback_ = callback; return WEBRTC_VIDEO_CODEC_OK; } int VP9DecoderImpl::Release() { if (decoder_ != NULL) { // When a codec is destroyed libvpx will release any buffers of // |frame_buffer_pool_| it is currently using. if (vpx_codec_destroy(decoder_)) { return WEBRTC_VIDEO_CODEC_MEMORY; } delete decoder_; decoder_ = NULL; } // Releases buffers from the pool. Any buffers not in use are deleted. Buffers // still referenced externally are deleted once fully released, not returning // to the pool. frame_buffer_pool_.ClearPool(); inited_ = false; return WEBRTC_VIDEO_CODEC_OK; } const char* VP9DecoderImpl::ImplementationName() const { return "libvpx"; } } // namespace webrtc