/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ /* * This file includes unit tests the QmResolution class * In particular, for the selection of spatial and/or temporal down-sampling. */ #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/modules/interface/module_common_types.h" #include "webrtc/modules/video_coding/main/source/qm_select.h" namespace webrtc { // Representative values of content metrics for: low/high/medium(default) state, // based on parameters settings in qm_select_data.h. const float kSpatialLow = 0.01f; const float kSpatialMedium = 0.03f; const float kSpatialHigh = 0.1f; const float kTemporalLow = 0.01f; const float kTemporalMedium = 0.06f; const float kTemporalHigh = 0.1f; class QmSelectTest : public ::testing::Test { protected: QmSelectTest() : qm_resolution_(new VCMQmResolution()), content_metrics_(new VideoContentMetrics()), qm_scale_(NULL) { } VCMQmResolution* qm_resolution_; VideoContentMetrics* content_metrics_; VCMResolutionScale* qm_scale_; void InitQmNativeData(float initial_bit_rate, int user_frame_rate, int native_width, int native_height, int num_layers); void UpdateQmEncodedFrame(size_t* encoded_size, size_t num_updates); void UpdateQmRateData(int* target_rate, int* encoder_sent_rate, int* incoming_frame_rate, uint8_t* fraction_lost, int num_updates); void UpdateQmContentData(float motion_metric, float spatial_metric, float spatial_metric_horiz, float spatial_metric_vert); bool IsSelectedActionCorrect(VCMResolutionScale* qm_scale, float fac_width, float fac_height, float fac_temp, uint16_t new_width, uint16_t new_height, float new_frame_rate); void TearDown() { delete qm_resolution_; delete content_metrics_; } }; TEST_F(QmSelectTest, HandleInputs) { // Expect parameter error. Initialize with invalid inputs. EXPECT_EQ(-4, qm_resolution_->Initialize(1000, 0, 640, 480, 1)); EXPECT_EQ(-4, qm_resolution_->Initialize(1000, 30, 640, 0, 1)); EXPECT_EQ(-4, qm_resolution_->Initialize(1000, 30, 0, 480, 1)); // Expect uninitialized error.: No valid initialization before selection. EXPECT_EQ(-7, qm_resolution_->SelectResolution(&qm_scale_)); VideoContentMetrics* content_metrics = NULL; EXPECT_EQ(0, qm_resolution_->Initialize(1000, 30, 640, 480, 1)); qm_resolution_->UpdateContent(content_metrics); // Content metrics are NULL: Expect success and no down-sampling action. EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0, 1.0, 1.0, 640, 480, 30.0f)); } // TODO(marpan): Add a test for number of temporal layers > 1. // No down-sampling action at high rates. TEST_F(QmSelectTest, NoActionHighRate) { // Initialize with bitrate, frame rate, native system width/height, and // number of temporal layers. InitQmNativeData(800, 30, 640, 480, 1); // Update with encoder frame size. uint16_t codec_width = 640; uint16_t codec_height = 480; qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); // Update rates for a sequence of intervals. int target_rate[] = {800, 800, 800}; int encoder_sent_rate[] = {800, 800, 800}; int incoming_frame_rate[] = {30, 30, 30}; uint8_t fraction_lost[] = {10, 10, 10}; UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, fraction_lost, 3); // Update content: motion level, and 3 spatial prediction errors. UpdateQmContentData(kTemporalLow, kSpatialLow, kSpatialLow, kSpatialLow); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(0, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480, 30.0f)); } // Rate is well below transition, down-sampling action is taken, // depending on the content state. TEST_F(QmSelectTest, DownActionLowRate) { // Initialize with bitrate, frame rate, native system width/height, and // number of temporal layers. InitQmNativeData(50, 30, 640, 480, 1); // Update with encoder frame size. uint16_t codec_width = 640; uint16_t codec_height = 480; qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); // Update rates for a sequence of intervals. int target_rate[] = {50, 50, 50}; int encoder_sent_rate[] = {50, 50, 50}; int incoming_frame_rate[] = {30, 30, 30}; uint8_t fraction_lost[] = {10, 10, 10}; UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, fraction_lost, 3); // Update content: motion level, and 3 spatial prediction errors. // High motion, low spatial: 2x2 spatial expected. UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, 30.0f)); qm_resolution_->ResetDownSamplingState(); // Low motion, low spatial: 2/3 temporal is expected. UpdateQmContentData(kTemporalLow, kSpatialLow, kSpatialLow, kSpatialLow); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(0, qm_resolution_->ComputeContentClass()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 640, 480, 20.5f)); qm_resolution_->ResetDownSamplingState(); // Medium motion, low spatial: 2x2 spatial expected. UpdateQmContentData(kTemporalMedium, kSpatialLow, kSpatialLow, kSpatialLow); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(6, qm_resolution_->ComputeContentClass()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, 30.0f)); qm_resolution_->ResetDownSamplingState(); // High motion, high spatial: 2/3 temporal expected. UpdateQmContentData(kTemporalHigh, kSpatialHigh, kSpatialHigh, kSpatialHigh); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(4, qm_resolution_->ComputeContentClass()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 640, 480, 20.5f)); qm_resolution_->ResetDownSamplingState(); // Low motion, high spatial: 1/2 temporal expected. UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f, 640, 480, 15.5f)); qm_resolution_->ResetDownSamplingState(); // Medium motion, high spatial: 1/2 temporal expected. UpdateQmContentData(kTemporalMedium, kSpatialHigh, kSpatialHigh, kSpatialHigh); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(7, qm_resolution_->ComputeContentClass()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f, 640, 480, 15.5f)); qm_resolution_->ResetDownSamplingState(); // High motion, medium spatial: 2x2 spatial expected. UpdateQmContentData(kTemporalHigh, kSpatialMedium, kSpatialMedium, kSpatialMedium); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(5, qm_resolution_->ComputeContentClass()); // Target frame rate for frame dropper should be the same as previous == 15. EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, 30.0f)); qm_resolution_->ResetDownSamplingState(); // Low motion, medium spatial: high frame rate, so 1/2 temporal expected. UpdateQmContentData(kTemporalLow, kSpatialMedium, kSpatialMedium, kSpatialMedium); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(2, qm_resolution_->ComputeContentClass()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f, 640, 480, 15.5f)); qm_resolution_->ResetDownSamplingState(); // Medium motion, medium spatial: high frame rate, so 2/3 temporal expected. UpdateQmContentData(kTemporalMedium, kSpatialMedium, kSpatialMedium, kSpatialMedium); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(8, qm_resolution_->ComputeContentClass()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 640, 480, 20.5f)); } // Rate mis-match is high, and we have over-shooting. // since target rate is below max for down-sampling, down-sampling is selected. TEST_F(QmSelectTest, DownActionHighRateMMOvershoot) { // Initialize with bitrate, frame rate, native system width/height, and // number of temporal layers. InitQmNativeData(300, 30, 640, 480, 1); // Update with encoder frame size. uint16_t codec_width = 640; uint16_t codec_height = 480; qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); // Update rates for a sequence of intervals. int target_rate[] = {300, 300, 300}; int encoder_sent_rate[] = {900, 900, 900}; int incoming_frame_rate[] = {30, 30, 30}; uint8_t fraction_lost[] = {10, 10, 10}; UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, fraction_lost, 3); // Update content: motion level, and 3 spatial prediction errors. // High motion, low spatial. UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStressedEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 4.0f / 3.0f, 4.0f / 3.0f, 1.0f, 480, 360, 30.0f)); qm_resolution_->ResetDownSamplingState(); // Low motion, high spatial UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 640, 480, 20.5f)); } // Rate mis-match is high, target rate is below max for down-sampling, // but since we have consistent under-shooting, no down-sampling action. TEST_F(QmSelectTest, NoActionHighRateMMUndershoot) { // Initialize with bitrate, frame rate, native system width/height, and // number of temporal layers. InitQmNativeData(300, 30, 640, 480, 1); // Update with encoder frame size. uint16_t codec_width = 640; uint16_t codec_height = 480; qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); // Update rates for a sequence of intervals. int target_rate[] = {300, 300, 300}; int encoder_sent_rate[] = {100, 100, 100}; int incoming_frame_rate[] = {30, 30, 30}; uint8_t fraction_lost[] = {10, 10, 10}; UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, fraction_lost, 3); // Update content: motion level, and 3 spatial prediction errors. // High motion, low spatial. UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kEasyEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480, 30.0f)); qm_resolution_->ResetDownSamplingState(); // Low motion, high spatial UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480, 30.0f)); } // Buffer is underflowing, and target rate is below max for down-sampling, // so action is taken. TEST_F(QmSelectTest, DownActionBufferUnderflow) { // Initialize with bitrate, frame rate, native system width/height, and // number of temporal layers. InitQmNativeData(300, 30, 640, 480, 1); // Update with encoder frame size. uint16_t codec_width = 640; uint16_t codec_height = 480; qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); // Update with encoded size over a number of frames. // per-frame bandwidth = 15 = 450/30: simulate (decoder) buffer underflow: size_t encoded_size[] = {200, 100, 50, 30, 60, 40, 20, 30, 20, 40}; UpdateQmEncodedFrame(encoded_size, GTEST_ARRAY_SIZE_(encoded_size)); // Update rates for a sequence of intervals. int target_rate[] = {300, 300, 300}; int encoder_sent_rate[] = {450, 450, 450}; int incoming_frame_rate[] = {30, 30, 30}; uint8_t fraction_lost[] = {10, 10, 10}; UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, fraction_lost, 3); // Update content: motion level, and 3 spatial prediction errors. // High motion, low spatial. UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStressedEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 4.0f / 3.0f, 4.0f / 3.0f, 1.0f, 480, 360, 30.0f)); qm_resolution_->ResetDownSamplingState(); // Low motion, high spatial UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 640, 480, 20.5f)); } // Target rate is below max for down-sampling, but buffer level is stable, // so no action is taken. TEST_F(QmSelectTest, NoActionBufferStable) { // Initialize with bitrate, frame rate, native system width/height, and // number of temporal layers. InitQmNativeData(350, 30, 640, 480, 1); // Update with encoder frame size. uint16_t codec_width = 640; uint16_t codec_height = 480; qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); // Update with encoded size over a number of frames. // per-frame bandwidth = 15 = 450/30: simulate stable (decoder) buffer levels. size_t encoded_size[] = {40, 10, 10, 16, 18, 20, 17, 20, 16, 15}; UpdateQmEncodedFrame(encoded_size, GTEST_ARRAY_SIZE_(encoded_size)); // Update rates for a sequence of intervals. int target_rate[] = {350, 350, 350}; int encoder_sent_rate[] = {350, 450, 450}; int incoming_frame_rate[] = {30, 30, 30}; uint8_t fraction_lost[] = {10, 10, 10}; UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, fraction_lost, 3); // Update content: motion level, and 3 spatial prediction errors. // High motion, low spatial. UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480, 30.0f)); qm_resolution_->ResetDownSamplingState(); // Low motion, high spatial UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480, 30.0f)); } // Very low rate, but no spatial down-sampling below some size (QCIF). TEST_F(QmSelectTest, LimitDownSpatialAction) { // Initialize with bitrate, frame rate, native system width/height, and // number of temporal layers. InitQmNativeData(10, 30, 176, 144, 1); // Update with encoder frame size. uint16_t codec_width = 176; uint16_t codec_height = 144; qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); EXPECT_EQ(0, qm_resolution_->GetImageType(codec_width, codec_height)); // Update rates for a sequence of intervals. int target_rate[] = {10, 10, 10}; int encoder_sent_rate[] = {10, 10, 10}; int incoming_frame_rate[] = {30, 30, 30}; uint8_t fraction_lost[] = {10, 10, 10}; UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, fraction_lost, 3); // Update content: motion level, and 3 spatial prediction errors. // High motion, low spatial. UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 176, 144, 30.0f)); } // Very low rate, but no frame reduction below some frame_rate (8fps). TEST_F(QmSelectTest, LimitDownTemporalAction) { // Initialize with bitrate, frame rate, native system width/height, and // number of temporal layers. InitQmNativeData(10, 8, 640, 480, 1); // Update with encoder frame size. uint16_t codec_width = 640; uint16_t codec_height = 480; qm_resolution_->UpdateCodecParameters(8.0f, codec_width, codec_height); EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); // Update rates for a sequence of intervals. int target_rate[] = {10, 10, 10}; int encoder_sent_rate[] = {10, 10, 10}; int incoming_frame_rate[] = {8, 8, 8}; uint8_t fraction_lost[] = {10, 10, 10}; UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, fraction_lost, 3); // Update content: motion level, and 3 spatial prediction errors. // Low motion, medium spatial. UpdateQmContentData(kTemporalLow, kSpatialMedium, kSpatialMedium, kSpatialMedium); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(2, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480, 8.0f)); } // Two stages: spatial down-sample and then back up spatially, // as rate as increased. TEST_F(QmSelectTest, 2StageDownSpatialUpSpatial) { // Initialize with bitrate, frame rate, native system width/height, and // number of temporal layers. InitQmNativeData(50, 30, 640, 480, 1); // Update with encoder frame size. uint16_t codec_width = 640; uint16_t codec_height = 480; qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); // Update rates for a sequence of intervals. int target_rate[] = {50, 50, 50}; int encoder_sent_rate[] = {50, 50, 50}; int incoming_frame_rate[] = {30, 30, 30}; uint8_t fraction_lost[] = {10, 10, 10}; UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, fraction_lost, 3); // Update content: motion level, and 3 spatial prediction errors. // High motion, low spatial. UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, 30.0f)); // Reset and go up in rate: expected to go back up, in 2 stages of 3/4. qm_resolution_->ResetRates(); qm_resolution_->UpdateCodecParameters(30.0f, 320, 240); EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240)); // Update rates for a sequence of intervals. int target_rate2[] = {400, 400, 400, 400, 400}; int encoder_sent_rate2[] = {400, 400, 400, 400, 400}; int incoming_frame_rate2[] = {30, 30, 30, 30, 30}; uint8_t fraction_lost2[] = {10, 10, 10, 10, 10}; UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2, fraction_lost2, 5); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); float scale = (4.0f / 3.0f) / 2.0f; EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, scale, scale, 1.0f, 480, 360, 30.0f)); qm_resolution_->UpdateCodecParameters(30.0f, 480, 360); EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360)); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 3.0f / 4.0f, 3.0f / 4.0f, 1.0f, 640, 480, 30.0f)); } // Two stages: spatial down-sample and then back up spatially, since encoder // is under-shooting target even though rate has not increased much. TEST_F(QmSelectTest, 2StageDownSpatialUpSpatialUndershoot) { // Initialize with bitrate, frame rate, native system width/height, and // number of temporal layers. InitQmNativeData(50, 30, 640, 480, 1); // Update with encoder frame size. uint16_t codec_width = 640; uint16_t codec_height = 480; qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); // Update rates for a sequence of intervals. int target_rate[] = {50, 50, 50}; int encoder_sent_rate[] = {50, 50, 50}; int incoming_frame_rate[] = {30, 30, 30}; uint8_t fraction_lost[] = {10, 10, 10}; UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, fraction_lost, 3); // Update content: motion level, and 3 spatial prediction errors. // High motion, low spatial. UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, 30.0f)); // Reset rates and simulate under-shooting scenario.: expect to go back up. // Goes up spatially in two stages for 1/2x1/2 down-sampling. qm_resolution_->ResetRates(); qm_resolution_->UpdateCodecParameters(30.0f, 320, 240); EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240)); // Update rates for a sequence of intervals. int target_rate2[] = {200, 200, 200, 200, 200}; int encoder_sent_rate2[] = {50, 50, 50, 50, 50}; int incoming_frame_rate2[] = {30, 30, 30, 30, 30}; uint8_t fraction_lost2[] = {10, 10, 10, 10, 10}; UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2, fraction_lost2, 5); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(kEasyEncoding, qm_resolution_->GetEncoderState()); float scale = (4.0f / 3.0f) / 2.0f; EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, scale, scale, 1.0f, 480, 360, 30.0f)); qm_resolution_->UpdateCodecParameters(30.0f, 480, 360); EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360)); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 3.0f / 4.0f, 3.0f / 4.0f, 1.0f, 640, 480, 30.0f)); } // Two stages: spatial down-sample and then no action to go up, // as encoding rate mis-match is too high. TEST_F(QmSelectTest, 2StageDownSpatialNoActionUp) { // Initialize with bitrate, frame rate, native system width/height, and // number of temporal layers. InitQmNativeData(50, 30, 640, 480, 1); // Update with encoder frame size. uint16_t codec_width = 640; uint16_t codec_height = 480; qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); // Update rates for a sequence of intervals. int target_rate[] = {50, 50, 50}; int encoder_sent_rate[] = {50, 50, 50}; int incoming_frame_rate[] = {30, 30, 30}; uint8_t fraction_lost[] = {10, 10, 10}; UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, fraction_lost, 3); // Update content: motion level, and 3 spatial prediction errors. // High motion, low spatial. UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, 30.0f)); // Reset and simulate large rate mis-match: expect no action to go back up. qm_resolution_->ResetRates(); qm_resolution_->UpdateCodecParameters(30.0f, 320, 240); EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240)); // Update rates for a sequence of intervals. int target_rate2[] = {400, 400, 400, 400, 400}; int encoder_sent_rate2[] = {1000, 1000, 1000, 1000, 1000}; int incoming_frame_rate2[] = {30, 30, 30, 30, 30}; uint8_t fraction_lost2[] = {10, 10, 10, 10, 10}; UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2, fraction_lost2, 5); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(kStressedEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 320, 240, 30.0f)); } // Two stages: temporally down-sample and then back up temporally, // as rate as increased. TEST_F(QmSelectTest, 2StatgeDownTemporalUpTemporal) { // Initialize with bitrate, frame rate, native system width/height, and // number of temporal layers. InitQmNativeData(50, 30, 640, 480, 1); // Update with encoder frame size. uint16_t codec_width = 640; uint16_t codec_height = 480; qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); // Update rates for a sequence of intervals. int target_rate[] = {50, 50, 50}; int encoder_sent_rate[] = {50, 50, 50}; int incoming_frame_rate[] = {30, 30, 30}; uint8_t fraction_lost[] = {10, 10, 10}; UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, fraction_lost, 3); // Update content: motion level, and 3 spatial prediction errors. // Low motion, high spatial. UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f, 640, 480, 15.5f)); // Reset rates and go up in rate: expect to go back up. qm_resolution_->ResetRates(); // Update rates for a sequence of intervals. int target_rate2[] = {400, 400, 400, 400, 400}; int encoder_sent_rate2[] = {400, 400, 400, 400, 400}; int incoming_frame_rate2[] = {15, 15, 15, 15, 15}; uint8_t fraction_lost2[] = {10, 10, 10, 10, 10}; UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2, fraction_lost2, 5); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 0.5f, 640, 480, 30.0f)); } // Two stages: temporal down-sample and then back up temporally, since encoder // is under-shooting target even though rate has not increased much. TEST_F(QmSelectTest, 2StatgeDownTemporalUpTemporalUndershoot) { // Initialize with bitrate, frame rate, native system width/height, and // number of temporal layers. InitQmNativeData(50, 30, 640, 480, 1); // Update with encoder frame size. uint16_t codec_width = 640; uint16_t codec_height = 480; qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); // Update rates for a sequence of intervals. int target_rate[] = {50, 50, 50}; int encoder_sent_rate[] = {50, 50, 50}; int incoming_frame_rate[] = {30, 30, 30}; uint8_t fraction_lost[] = {10, 10, 10}; UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, fraction_lost, 3); // Update content: motion level, and 3 spatial prediction errors. // Low motion, high spatial. UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f, 640, 480, 15.5f)); // Reset rates and simulate under-shooting scenario.: expect to go back up. qm_resolution_->ResetRates(); // Update rates for a sequence of intervals. int target_rate2[] = {150, 150, 150, 150, 150}; int encoder_sent_rate2[] = {50, 50, 50, 50, 50}; int incoming_frame_rate2[] = {15, 15, 15, 15, 15}; uint8_t fraction_lost2[] = {10, 10, 10, 10, 10}; UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2, fraction_lost2, 5); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(kEasyEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 0.5f, 640, 480, 30.0f)); } // Two stages: temporal down-sample and then no action to go up, // as encoding rate mis-match is too high. TEST_F(QmSelectTest, 2StageDownTemporalNoActionUp) { // Initialize with bitrate, frame rate, native system width/height, and // number of temporal layers. InitQmNativeData(50, 30, 640, 480, 1); // Update with encoder frame size. uint16_t codec_width = 640; uint16_t codec_height = 480; qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); // Update rates for a sequence of intervals. int target_rate[] = {50, 50, 50}; int encoder_sent_rate[] = {50, 50, 50}; int incoming_frame_rate[] = {30, 30, 30}; uint8_t fraction_lost[] = {10, 10, 10}; UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, fraction_lost, 3); // Update content: motion level, and 3 spatial prediction errors. // Low motion, high spatial. UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1, 1, 2, 640, 480, 15.5f)); // Reset and simulate large rate mis-match: expect no action to go back up. qm_resolution_->UpdateCodecParameters(15.0f, codec_width, codec_height); qm_resolution_->ResetRates(); // Update rates for a sequence of intervals. int target_rate2[] = {600, 600, 600, 600, 600}; int encoder_sent_rate2[] = {1000, 1000, 1000, 1000, 1000}; int incoming_frame_rate2[] = {15, 15, 15, 15, 15}; uint8_t fraction_lost2[] = {10, 10, 10, 10, 10}; UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2, fraction_lost2, 5); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(kStressedEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480, 15.0f)); } // 3 stages: spatial down-sample, followed by temporal down-sample, // and then go up to full state, as encoding rate has increased. TEST_F(QmSelectTest, 3StageDownSpatialTemporlaUpSpatialTemporal) { // Initialize with bitrate, frame rate, native system width/height, and // number of temporal layers. InitQmNativeData(80, 30, 640, 480, 1); // Update with encoder frame size. uint16_t codec_width = 640; uint16_t codec_height = 480; qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); // Update rates for a sequence of intervals. int target_rate[] = {80, 80, 80}; int encoder_sent_rate[] = {80, 80, 80}; int incoming_frame_rate[] = {30, 30, 30}; uint8_t fraction_lost[] = {10, 10, 10}; UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, fraction_lost, 3); // Update content: motion level, and 3 spatial prediction errors. // High motion, low spatial. UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, 30.0f)); // Change content data: expect temporal down-sample. qm_resolution_->UpdateCodecParameters(30.0f, 320, 240); EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240)); // Reset rates and go lower in rate. qm_resolution_->ResetRates(); int target_rate2[] = {40, 40, 40, 40, 40}; int encoder_sent_rate2[] = {40, 40, 40, 40, 40}; int incoming_frame_rate2[] = {30, 30, 30, 30, 30}; uint8_t fraction_lost2[] = {10, 10, 10, 10, 10}; UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2, fraction_lost2, 5); // Update content: motion level, and 3 spatial prediction errors. // Low motion, high spatial. UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 320, 240, 20.5f)); // Reset rates and go high up in rate: expect to go back up both spatial // and temporally. The 1/2x1/2 spatial is undone in two stages. qm_resolution_->ResetRates(); // Update rates for a sequence of intervals. int target_rate3[] = {1000, 1000, 1000, 1000, 1000}; int encoder_sent_rate3[] = {1000, 1000, 1000, 1000, 1000}; int incoming_frame_rate3[] = {20, 20, 20, 20, 20}; uint8_t fraction_lost3[] = {10, 10, 10, 10, 10}; UpdateQmRateData(target_rate3, encoder_sent_rate3, incoming_frame_rate3, fraction_lost3, 5); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); float scale = (4.0f / 3.0f) / 2.0f; EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, scale, scale, 2.0f / 3.0f, 480, 360, 30.0f)); qm_resolution_->UpdateCodecParameters(30.0f, 480, 360); EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360)); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 3.0f / 4.0f, 3.0f / 4.0f, 1.0f, 640, 480, 30.0f)); } // No down-sampling below some total amount. TEST_F(QmSelectTest, NoActionTooMuchDownSampling) { // Initialize with bitrate, frame rate, native system width/height, and // number of temporal layers. InitQmNativeData(150, 30, 1280, 720, 1); // Update with encoder frame size. uint16_t codec_width = 1280; uint16_t codec_height = 720; qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); EXPECT_EQ(7, qm_resolution_->GetImageType(codec_width, codec_height)); // Update rates for a sequence of intervals. int target_rate[] = {150, 150, 150}; int encoder_sent_rate[] = {150, 150, 150}; int incoming_frame_rate[] = {30, 30, 30}; uint8_t fraction_lost[] = {10, 10, 10}; UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, fraction_lost, 3); // Update content: motion level, and 3 spatial prediction errors. // High motion, low spatial. UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 640, 360, 30.0f)); // Reset and lower rates to get another spatial action (3/4x3/4). // Lower the frame rate for spatial to be selected again. qm_resolution_->ResetRates(); qm_resolution_->UpdateCodecParameters(10.0f, 640, 360); EXPECT_EQ(4, qm_resolution_->GetImageType(640, 360)); // Update rates for a sequence of intervals. int target_rate2[] = {70, 70, 70, 70, 70}; int encoder_sent_rate2[] = {70, 70, 70, 70, 70}; int incoming_frame_rate2[] = {10, 10, 10, 10, 10}; uint8_t fraction_lost2[] = {10, 10, 10, 10, 10}; UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2, fraction_lost2, 5); // Update content: motion level, and 3 spatial prediction errors. // High motion, medium spatial. UpdateQmContentData(kTemporalHigh, kSpatialMedium, kSpatialMedium, kSpatialMedium); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(5, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 4.0f / 3.0f, 4.0f / 3.0f, 1.0f, 480, 270, 10.0f)); // Reset and go to very low rate: no action should be taken, // we went down too much already. qm_resolution_->ResetRates(); qm_resolution_->UpdateCodecParameters(10.0f, 480, 270); EXPECT_EQ(3, qm_resolution_->GetImageType(480, 270)); // Update rates for a sequence of intervals. int target_rate3[] = {10, 10, 10, 10, 10}; int encoder_sent_rate3[] = {10, 10, 10, 10, 10}; int incoming_frame_rate3[] = {10, 10, 10, 10, 10}; uint8_t fraction_lost3[] = {10, 10, 10, 10, 10}; UpdateQmRateData(target_rate3, encoder_sent_rate3, incoming_frame_rate3, fraction_lost3, 5); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(5, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 480, 270, 10.0f)); } // Multiple down-sampling stages and then undo all of them. // Spatial down-sample 3/4x3/4, followed by temporal down-sample 2/3, // followed by spatial 3/4x3/4. Then go up to full state, // as encoding rate has increased. TEST_F(QmSelectTest, MultipleStagesCheckActionHistory1) { // Initialize with bitrate, frame rate, native system width/height, and // number of temporal layers. InitQmNativeData(150, 30, 640, 480, 1); // Update with encoder frame size. uint16_t codec_width = 640; uint16_t codec_height = 480; qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); // Go down spatial 3/4x3/4. // Update rates for a sequence of intervals. int target_rate[] = {150, 150, 150}; int encoder_sent_rate[] = {150, 150, 150}; int incoming_frame_rate[] = {30, 30, 30}; uint8_t fraction_lost[] = {10, 10, 10}; UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, fraction_lost, 3); // Update content: motion level, and 3 spatial prediction errors. // Medium motion, low spatial. UpdateQmContentData(kTemporalMedium, kSpatialLow, kSpatialLow, kSpatialLow); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(6, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 4.0f / 3.0f, 4.0f / 3.0f, 1.0f, 480, 360, 30.0f)); // Go down 2/3 temporal. qm_resolution_->UpdateCodecParameters(30.0f, 480, 360); EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360)); qm_resolution_->ResetRates(); int target_rate2[] = {100, 100, 100, 100, 100}; int encoder_sent_rate2[] = {100, 100, 100, 100, 100}; int incoming_frame_rate2[] = {30, 30, 30, 30, 30}; uint8_t fraction_lost2[] = {10, 10, 10, 10, 10}; UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2, fraction_lost2, 5); // Update content: motion level, and 3 spatial prediction errors. // Low motion, high spatial. UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 480, 360, 20.5f)); // Go down 3/4x3/4 spatial: qm_resolution_->UpdateCodecParameters(20.0f, 480, 360); qm_resolution_->ResetRates(); int target_rate3[] = {80, 80, 80, 80, 80}; int encoder_sent_rate3[] = {80, 80, 80, 80, 80}; int incoming_frame_rate3[] = {20, 20, 20, 20, 20}; uint8_t fraction_lost3[] = {10, 10, 10, 10, 10}; UpdateQmRateData(target_rate3, encoder_sent_rate3, incoming_frame_rate3, fraction_lost3, 5); // Update content: motion level, and 3 spatial prediction errors. // High motion, low spatial. UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); // The two spatial actions of 3/4x3/4 are converted to 1/2x1/2, // so scale factor is 2.0. EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, 20.0f)); // Reset rates and go high up in rate: expect to go up: // 1/2x1x2 spatial and 1/2 temporally. // Go up 1/2x1/2 spatially and 1/2 temporally. Spatial is done in 2 stages. qm_resolution_->UpdateCodecParameters(15.0f, 320, 240); EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240)); qm_resolution_->ResetRates(); // Update rates for a sequence of intervals. int target_rate4[] = {1000, 1000, 1000, 1000, 1000}; int encoder_sent_rate4[] = {1000, 1000, 1000, 1000, 1000}; int incoming_frame_rate4[] = {15, 15, 15, 15, 15}; uint8_t fraction_lost4[] = {10, 10, 10, 10, 10}; UpdateQmRateData(target_rate4, encoder_sent_rate4, incoming_frame_rate4, fraction_lost4, 5); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); float scale = (4.0f / 3.0f) / 2.0f; EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, scale, scale, 2.0f / 3.0f, 480, 360, 30.0f)); qm_resolution_->UpdateCodecParameters(30.0f, 480, 360); EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360)); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 3.0f / 4.0f, 3.0f / 4.0f, 1.0f, 640, 480, 30.0f)); } // Multiple down-sampling and up-sample stages, with partial undoing. // Spatial down-sample 1/2x1/2, followed by temporal down-sample 2/3, undo the // temporal, then another temporal, and then undo both spatial and temporal. TEST_F(QmSelectTest, MultipleStagesCheckActionHistory2) { // Initialize with bitrate, frame rate, native system width/height, and // number of temporal layers. InitQmNativeData(80, 30, 640, 480, 1); // Update with encoder frame size. uint16_t codec_width = 640; uint16_t codec_height = 480; qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); // Go down 1/2x1/2 spatial. // Update rates for a sequence of intervals. int target_rate[] = {80, 80, 80}; int encoder_sent_rate[] = {80, 80, 80}; int incoming_frame_rate[] = {30, 30, 30}; uint8_t fraction_lost[] = {10, 10, 10}; UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, fraction_lost, 3); // Update content: motion level, and 3 spatial prediction errors. // Medium motion, low spatial. UpdateQmContentData(kTemporalMedium, kSpatialLow, kSpatialLow, kSpatialLow); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(6, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, 30.0f)); // Go down 2/3 temporal. qm_resolution_->UpdateCodecParameters(30.0f, 320, 240); EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240)); qm_resolution_->ResetRates(); int target_rate2[] = {40, 40, 40, 40, 40}; int encoder_sent_rate2[] = {40, 40, 40, 40, 40}; int incoming_frame_rate2[] = {30, 30, 30, 30, 30}; uint8_t fraction_lost2[] = {10, 10, 10, 10, 10}; UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2, fraction_lost2, 5); // Update content: motion level, and 3 spatial prediction errors. // Medium motion, high spatial. UpdateQmContentData(kTemporalMedium, kSpatialHigh, kSpatialHigh, kSpatialHigh); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(7, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 320, 240, 20.5f)); // Go up 2/3 temporally. qm_resolution_->UpdateCodecParameters(20.0f, 320, 240); qm_resolution_->ResetRates(); // Update rates for a sequence of intervals. int target_rate3[] = {150, 150, 150, 150, 150}; int encoder_sent_rate3[] = {150, 150, 150, 150, 150}; int incoming_frame_rate3[] = {20, 20, 20, 20, 20}; uint8_t fraction_lost3[] = {10, 10, 10, 10, 10}; UpdateQmRateData(target_rate3, encoder_sent_rate3, incoming_frame_rate3, fraction_lost3, 5); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(7, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f / 3.0f, 320, 240, 30.0f)); // Go down 2/3 temporal. qm_resolution_->UpdateCodecParameters(30.0f, 320, 240); EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240)); qm_resolution_->ResetRates(); int target_rate4[] = {40, 40, 40, 40, 40}; int encoder_sent_rate4[] = {40, 40, 40, 40, 40}; int incoming_frame_rate4[] = {30, 30, 30, 30, 30}; uint8_t fraction_lost4[] = {10, 10, 10, 10, 10}; UpdateQmRateData(target_rate4, encoder_sent_rate4, incoming_frame_rate4, fraction_lost4, 5); // Update content: motion level, and 3 spatial prediction errors. // Low motion, high spatial. UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 320, 240, 20.5f)); // Go up spatial and temporal. Spatial undoing is done in 2 stages. qm_resolution_->UpdateCodecParameters(20.5f, 320, 240); qm_resolution_->ResetRates(); // Update rates for a sequence of intervals. int target_rate5[] = {1000, 1000, 1000, 1000, 1000}; int encoder_sent_rate5[] = {1000, 1000, 1000, 1000, 1000}; int incoming_frame_rate5[] = {20, 20, 20, 20, 20}; uint8_t fraction_lost5[] = {10, 10, 10, 10, 10}; UpdateQmRateData(target_rate5, encoder_sent_rate5, incoming_frame_rate5, fraction_lost5, 5); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); float scale = (4.0f / 3.0f) / 2.0f; EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, scale, scale, 2.0f / 3.0f, 480, 360, 30.0f)); qm_resolution_->UpdateCodecParameters(30.0f, 480, 360); EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360)); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 3.0f / 4.0f, 3.0f / 4.0f, 1.0f, 640, 480, 30.0f)); } // Multiple down-sampling and up-sample stages, with partial undoing. // Spatial down-sample 3/4x3/4, followed by temporal down-sample 2/3, // undo the temporal 2/3, and then undo the spatial. TEST_F(QmSelectTest, MultipleStagesCheckActionHistory3) { // Initialize with bitrate, frame rate, native system width/height, and // number of temporal layers. InitQmNativeData(100, 30, 640, 480, 1); // Update with encoder frame size. uint16_t codec_width = 640; uint16_t codec_height = 480; qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); // Go down 3/4x3/4 spatial. // Update rates for a sequence of intervals. int target_rate[] = {100, 100, 100}; int encoder_sent_rate[] = {100, 100, 100}; int incoming_frame_rate[] = {30, 30, 30}; uint8_t fraction_lost[] = {10, 10, 10}; UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, fraction_lost, 3); // Update content: motion level, and 3 spatial prediction errors. // Medium motion, low spatial. UpdateQmContentData(kTemporalMedium, kSpatialLow, kSpatialLow, kSpatialLow); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(6, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 4.0f / 3.0f, 4.0f / 3.0f, 1.0f, 480, 360, 30.0f)); // Go down 2/3 temporal. qm_resolution_->UpdateCodecParameters(30.0f, 480, 360); EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360)); qm_resolution_->ResetRates(); int target_rate2[] = {100, 100, 100, 100, 100}; int encoder_sent_rate2[] = {100, 100, 100, 100, 100}; int incoming_frame_rate2[] = {30, 30, 30, 30, 30}; uint8_t fraction_lost2[] = {10, 10, 10, 10, 10}; UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2, fraction_lost2, 5); // Update content: motion level, and 3 spatial prediction errors. // Low motion, high spatial. UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 480, 360, 20.5f)); // Go up 2/3 temporal. qm_resolution_->UpdateCodecParameters(20.5f, 480, 360); qm_resolution_->ResetRates(); // Update rates for a sequence of intervals. int target_rate3[] = {250, 250, 250, 250, 250}; int encoder_sent_rate3[] = {250, 250, 250, 250, 250}; int incoming_frame_rate3[] = {20, 20, 20, 20, 120}; uint8_t fraction_lost3[] = {10, 10, 10, 10, 10}; UpdateQmRateData(target_rate3, encoder_sent_rate3, incoming_frame_rate3, fraction_lost3, 5); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f / 3.0f, 480, 360, 30.0f)); // Go up spatial. qm_resolution_->UpdateCodecParameters(30.0f, 480, 360); EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360)); qm_resolution_->ResetRates(); int target_rate4[] = {500, 500, 500, 500, 500}; int encoder_sent_rate4[] = {500, 500, 500, 500, 500}; int incoming_frame_rate4[] = {30, 30, 30, 30, 30}; uint8_t fraction_lost4[] = {30, 30, 30, 30, 30}; UpdateQmRateData(target_rate4, encoder_sent_rate4, incoming_frame_rate4, fraction_lost4, 5); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 3.0f / 4.0f, 3.0f / 4.0f, 1.0f, 640, 480, 30.0f)); } // Two stages of 3/4x3/4 converted to one stage of 1/2x1/2. TEST_F(QmSelectTest, ConvertThreeQuartersToOneHalf) { // Initialize with bitrate, frame rate, native system width/height, and // number of temporal layers. InitQmNativeData(150, 30, 640, 480, 1); // Update with encoder frame size. uint16_t codec_width = 640; uint16_t codec_height = 480; qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); // Go down 3/4x3/4 spatial. // Update rates for a sequence of intervals. int target_rate[] = {150, 150, 150}; int encoder_sent_rate[] = {150, 150, 150}; int incoming_frame_rate[] = {30, 30, 30}; uint8_t fraction_lost[] = {10, 10, 10}; UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, fraction_lost, 3); // Update content: motion level, and 3 spatial prediction errors. // Medium motion, low spatial. UpdateQmContentData(kTemporalMedium, kSpatialLow, kSpatialLow, kSpatialLow); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(6, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 4.0f / 3.0f, 4.0f / 3.0f, 1.0f, 480, 360, 30.0f)); // Set rates to go down another 3/4 spatial. Should be converted ton 1/2. qm_resolution_->UpdateCodecParameters(30.0f, 480, 360); EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360)); qm_resolution_->ResetRates(); int target_rate2[] = {100, 100, 100, 100, 100}; int encoder_sent_rate2[] = {100, 100, 100, 100, 100}; int incoming_frame_rate2[] = {30, 30, 30, 30, 30}; uint8_t fraction_lost2[] = {10, 10, 10, 10, 10}; UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2, fraction_lost2, 5); // Update content: motion level, and 3 spatial prediction errors. // Medium motion, low spatial. UpdateQmContentData(kTemporalMedium, kSpatialLow, kSpatialLow, kSpatialLow); EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); EXPECT_EQ(6, qm_resolution_->ComputeContentClass()); EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, 30.0f)); } void QmSelectTest::InitQmNativeData(float initial_bit_rate, int user_frame_rate, int native_width, int native_height, int num_layers) { EXPECT_EQ(0, qm_resolution_->Initialize(initial_bit_rate, user_frame_rate, native_width, native_height, num_layers)); } void QmSelectTest::UpdateQmContentData(float motion_metric, float spatial_metric, float spatial_metric_horiz, float spatial_metric_vert) { content_metrics_->motion_magnitude = motion_metric; content_metrics_->spatial_pred_err = spatial_metric; content_metrics_->spatial_pred_err_h = spatial_metric_horiz; content_metrics_->spatial_pred_err_v = spatial_metric_vert; qm_resolution_->UpdateContent(content_metrics_); } void QmSelectTest::UpdateQmEncodedFrame(size_t* encoded_size, size_t num_updates) { for (size_t i = 0; i < num_updates; ++i) { // Convert to bytes. size_t encoded_size_update = 1000 * encoded_size[i] / 8; qm_resolution_->UpdateEncodedSize(encoded_size_update); } } void QmSelectTest::UpdateQmRateData(int* target_rate, int* encoder_sent_rate, int* incoming_frame_rate, uint8_t* fraction_lost, int num_updates) { for (int i = 0; i < num_updates; ++i) { float target_rate_update = target_rate[i]; float encoder_sent_rate_update = encoder_sent_rate[i]; float incoming_frame_rate_update = incoming_frame_rate[i]; uint8_t fraction_lost_update = fraction_lost[i]; qm_resolution_->UpdateRates(target_rate_update, encoder_sent_rate_update, incoming_frame_rate_update, fraction_lost_update); } } // Check is the selected action from the QmResolution class is the same // as the expected scales from |fac_width|, |fac_height|, |fac_temp|. bool QmSelectTest::IsSelectedActionCorrect(VCMResolutionScale* qm_scale, float fac_width, float fac_height, float fac_temp, uint16_t new_width, uint16_t new_height, float new_frame_rate) { if (qm_scale->spatial_width_fact == fac_width && qm_scale->spatial_height_fact == fac_height && qm_scale->temporal_fact == fac_temp && qm_scale->codec_width == new_width && qm_scale->codec_height == new_height && qm_scale->frame_rate == new_frame_rate) { return true; } else { return false; } } } // namespace webrtc