/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/modules/video_coding/main/interface/video_coding.h" #include "webrtc/modules/video_coding/main/source/internal_defines.h" #include "webrtc/modules/video_coding/main/source/timing.h" #include "webrtc/modules/video_coding/main/test/test_util.h" #include "webrtc/system_wrappers/include/clock.h" #include "webrtc/system_wrappers/include/trace.h" #include "webrtc/test/testsupport/fileutils.h" namespace webrtc { TEST(ReceiverTiming, Tests) { SimulatedClock clock(0); VCMTiming timing(&clock); uint32_t waitTime = 0; uint32_t jitterDelayMs = 0; uint32_t maxDecodeTimeMs = 0; uint32_t timeStamp = 0; timing.Reset(); timing.UpdateCurrentDelay(timeStamp); timing.Reset(); timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds()); jitterDelayMs = 20; timing.SetJitterDelay(jitterDelayMs); timing.UpdateCurrentDelay(timeStamp); timing.set_render_delay(0); waitTime = timing.MaxWaitingTime( timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()), clock.TimeInMilliseconds()); // First update initializes the render time. Since we have no decode delay // we get waitTime = renderTime - now - renderDelay = jitter. EXPECT_EQ(jitterDelayMs, waitTime); jitterDelayMs += VCMTiming::kDelayMaxChangeMsPerS + 10; timeStamp += 90000; clock.AdvanceTimeMilliseconds(1000); timing.SetJitterDelay(jitterDelayMs); timing.UpdateCurrentDelay(timeStamp); waitTime = timing.MaxWaitingTime(timing.RenderTimeMs( timeStamp, clock.TimeInMilliseconds()), clock.TimeInMilliseconds()); // Since we gradually increase the delay we only get 100 ms every second. EXPECT_EQ(jitterDelayMs - 10, waitTime); timeStamp += 90000; clock.AdvanceTimeMilliseconds(1000); timing.UpdateCurrentDelay(timeStamp); waitTime = timing.MaxWaitingTime( timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()), clock.TimeInMilliseconds()); EXPECT_EQ(waitTime, jitterDelayMs); // 300 incoming frames without jitter, verify that this gives the exact wait // time. for (int i = 0; i < 300; i++) { clock.AdvanceTimeMilliseconds(1000 / 25); timeStamp += 90000 / 25; timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds()); } timing.UpdateCurrentDelay(timeStamp); waitTime = timing.MaxWaitingTime( timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()), clock.TimeInMilliseconds()); EXPECT_EQ(waitTime, jitterDelayMs); // Add decode time estimates. for (int i = 0; i < 10; i++) { int64_t startTimeMs = clock.TimeInMilliseconds(); clock.AdvanceTimeMilliseconds(10); timing.StopDecodeTimer(timeStamp, startTimeMs, clock.TimeInMilliseconds(), timing.RenderTimeMs( timeStamp, clock.TimeInMilliseconds())); timeStamp += 90000 / 25; clock.AdvanceTimeMilliseconds(1000 / 25 - 10); timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds()); } maxDecodeTimeMs = 10; timing.SetJitterDelay(jitterDelayMs); clock.AdvanceTimeMilliseconds(1000); timeStamp += 90000; timing.UpdateCurrentDelay(timeStamp); waitTime = timing.MaxWaitingTime( timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()), clock.TimeInMilliseconds()); EXPECT_EQ(waitTime, jitterDelayMs); uint32_t minTotalDelayMs = 200; timing.set_min_playout_delay(minTotalDelayMs); clock.AdvanceTimeMilliseconds(5000); timeStamp += 5*90000; timing.UpdateCurrentDelay(timeStamp); const int kRenderDelayMs = 10; timing.set_render_delay(kRenderDelayMs); waitTime = timing.MaxWaitingTime( timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()), clock.TimeInMilliseconds()); // We should at least have minTotalDelayMs - decodeTime (10) - renderTime // (10) to wait. EXPECT_EQ(waitTime, minTotalDelayMs - maxDecodeTimeMs - kRenderDelayMs); // The total video delay should be equal to the min total delay. EXPECT_EQ(minTotalDelayMs, timing.TargetVideoDelay()); // Reset playout delay. timing.set_min_playout_delay(0); clock.AdvanceTimeMilliseconds(5000); timeStamp += 5*90000; timing.UpdateCurrentDelay(timeStamp); } TEST(ReceiverTiming, WrapAround) { const int kFramerate = 25; SimulatedClock clock(0); VCMTiming timing(&clock); // Provoke a wrap-around. The forth frame will have wrapped at 25 fps. uint32_t timestamp = 0xFFFFFFFFu - 3 * 90000 / kFramerate; for (int i = 0; i < 4; ++i) { timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds()); clock.AdvanceTimeMilliseconds(1000 / kFramerate); timestamp += 90000 / kFramerate; int64_t render_time = timing.RenderTimeMs(0xFFFFFFFFu, clock.TimeInMilliseconds()); EXPECT_EQ(3 * 1000 / kFramerate, render_time); render_time = timing.RenderTimeMs(89u, // One second later in 90 kHz. clock.TimeInMilliseconds()); EXPECT_EQ(3 * 1000 / kFramerate + 1, render_time); } } } // namespace webrtc