/* * Copyright 2004 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef WEBRTC_P2P_BASE_PORT_H_ #define WEBRTC_P2P_BASE_PORT_H_ #include #include #include #include #include "webrtc/p2p/base/candidate.h" #include "webrtc/p2p/base/packetsocketfactory.h" #include "webrtc/p2p/base/portinterface.h" #include "webrtc/p2p/base/stun.h" #include "webrtc/p2p/base/stunrequest.h" #include "webrtc/p2p/base/transport.h" #include "webrtc/base/asyncpacketsocket.h" #include "webrtc/base/network.h" #include "webrtc/base/proxyinfo.h" #include "webrtc/base/ratetracker.h" #include "webrtc/base/sigslot.h" #include "webrtc/base/socketaddress.h" #include "webrtc/base/thread.h" namespace cricket { class Connection; class ConnectionRequest; extern const char LOCAL_PORT_TYPE[]; extern const char STUN_PORT_TYPE[]; extern const char PRFLX_PORT_TYPE[]; extern const char RELAY_PORT_TYPE[]; extern const char UDP_PROTOCOL_NAME[]; extern const char TCP_PROTOCOL_NAME[]; extern const char SSLTCP_PROTOCOL_NAME[]; // RFC 6544, TCP candidate encoding rules. extern const int DISCARD_PORT; extern const char TCPTYPE_ACTIVE_STR[]; extern const char TCPTYPE_PASSIVE_STR[]; extern const char TCPTYPE_SIMOPEN_STR[]; // The minimum time we will wait before destroying a connection after creating // it. const uint32_t MIN_CONNECTION_LIFETIME = 10 * 1000; // 10 seconds. // A connection will be declared dead if it has not received anything for this // long. const uint32_t DEAD_CONNECTION_RECEIVE_TIMEOUT = 30 * 1000; // 30 seconds. // The timeout duration when a connection does not receive anything. const uint32_t WEAK_CONNECTION_RECEIVE_TIMEOUT = 2500; // 2.5 seconds // The length of time we wait before timing out writability on a connection. const uint32_t CONNECTION_WRITE_TIMEOUT = 15 * 1000; // 15 seconds // The length of time we wait before we become unwritable. const uint32_t CONNECTION_WRITE_CONNECT_TIMEOUT = 5 * 1000; // 5 seconds // The number of pings that must fail to respond before we become unwritable. const uint32_t CONNECTION_WRITE_CONNECT_FAILURES = 5; // This is the length of time that we wait for a ping response to come back. const int CONNECTION_RESPONSE_TIMEOUT = 5 * 1000; // 5 seconds enum RelayType { RELAY_GTURN, // Legacy google relay service. RELAY_TURN // Standard (TURN) relay service. }; enum IcePriorityValue { // The reason we are choosing Relay preference 2 is because, we can run // Relay from client to server on UDP/TCP/TLS. To distinguish the transport // protocol, we prefer UDP over TCP over TLS. // For UDP ICE_TYPE_PREFERENCE_RELAY will be 2. // For TCP ICE_TYPE_PREFERENCE_RELAY will be 1. // For TLS ICE_TYPE_PREFERENCE_RELAY will be 0. // Check turnport.cc for setting these values. ICE_TYPE_PREFERENCE_RELAY = 2, ICE_TYPE_PREFERENCE_HOST_TCP = 90, ICE_TYPE_PREFERENCE_SRFLX = 100, ICE_TYPE_PREFERENCE_PRFLX = 110, ICE_TYPE_PREFERENCE_HOST = 126 }; const char* ProtoToString(ProtocolType proto); bool StringToProto(const char* value, ProtocolType* proto); struct ProtocolAddress { rtc::SocketAddress address; ProtocolType proto; bool secure; ProtocolAddress(const rtc::SocketAddress& a, ProtocolType p) : address(a), proto(p), secure(false) { } ProtocolAddress(const rtc::SocketAddress& a, ProtocolType p, bool sec) : address(a), proto(p), secure(sec) { } }; typedef std::set ServerAddresses; // Represents a local communication mechanism that can be used to create // connections to similar mechanisms of the other client. Subclasses of this // one add support for specific mechanisms like local UDP ports. class Port : public PortInterface, public rtc::MessageHandler, public sigslot::has_slots<> { public: Port(rtc::Thread* thread, rtc::PacketSocketFactory* factory, rtc::Network* network, const rtc::IPAddress& ip, const std::string& username_fragment, const std::string& password); Port(rtc::Thread* thread, const std::string& type, rtc::PacketSocketFactory* factory, rtc::Network* network, const rtc::IPAddress& ip, uint16_t min_port, uint16_t max_port, const std::string& username_fragment, const std::string& password); virtual ~Port(); virtual const std::string& Type() const { return type_; } virtual rtc::Network* Network() const { return network_; } // Methods to set/get ICE role and tiebreaker values. IceRole GetIceRole() const { return ice_role_; } void SetIceRole(IceRole role) { ice_role_ = role; } void SetIceTiebreaker(uint64_t tiebreaker) { tiebreaker_ = tiebreaker; } uint64_t IceTiebreaker() const { return tiebreaker_; } virtual bool SharedSocket() const { return shared_socket_; } void ResetSharedSocket() { shared_socket_ = false; } // The thread on which this port performs its I/O. rtc::Thread* thread() { return thread_; } // The factory used to create the sockets of this port. rtc::PacketSocketFactory* socket_factory() const { return factory_; } void set_socket_factory(rtc::PacketSocketFactory* factory) { factory_ = factory; } // For debugging purposes. const std::string& content_name() const { return content_name_; } void set_content_name(const std::string& content_name) { content_name_ = content_name; } int component() const { return component_; } void set_component(int component) { component_ = component; } bool send_retransmit_count_attribute() const { return send_retransmit_count_attribute_; } void set_send_retransmit_count_attribute(bool enable) { send_retransmit_count_attribute_ = enable; } // Identifies the generation that this port was created in. uint32_t generation() { return generation_; } void set_generation(uint32_t generation) { generation_ = generation; } // ICE requires a single username/password per content/media line. So the // |ice_username_fragment_| of the ports that belongs to the same content will // be the same. However this causes a small complication with our relay // server, which expects different username for RTP and RTCP. // // To resolve this problem, we implemented the username_fragment(), // which returns a different username (calculated from // |ice_username_fragment_|) for RTCP in the case of ICEPROTO_GOOGLE. And the // username_fragment() simply returns |ice_username_fragment_| when running // in ICEPROTO_RFC5245. // // As a result the ICEPROTO_GOOGLE will use different usernames for RTP and // RTCP. And the ICEPROTO_RFC5245 will use same username for both RTP and // RTCP. const std::string username_fragment() const; const std::string& password() const { return password_; } // Fired when candidates are discovered by the port. When all candidates // are discovered that belong to port SignalAddressReady is fired. sigslot::signal2 SignalCandidateReady; // Provides all of the above information in one handy object. virtual const std::vector& Candidates() const { return candidates_; } // SignalPortComplete is sent when port completes the task of candidates // allocation. sigslot::signal1 SignalPortComplete; // This signal sent when port fails to allocate candidates and this port // can't be used in establishing the connections. When port is in shared mode // and port fails to allocate one of the candidates, port shouldn't send // this signal as other candidates might be usefull in establishing the // connection. sigslot::signal1 SignalPortError; // Returns a map containing all of the connections of this port, keyed by the // remote address. typedef std::map AddressMap; const AddressMap& connections() { return connections_; } // Returns the connection to the given address or NULL if none exists. virtual Connection* GetConnection( const rtc::SocketAddress& remote_addr); // Called each time a connection is created. sigslot::signal2 SignalConnectionCreated; // In a shared socket mode each port which shares the socket will decide // to accept the packet based on the |remote_addr|. Currently only UDP // port implemented this method. // TODO(mallinath) - Make it pure virtual. virtual bool HandleIncomingPacket( rtc::AsyncPacketSocket* socket, const char* data, size_t size, const rtc::SocketAddress& remote_addr, const rtc::PacketTime& packet_time) { ASSERT(false); return false; } // Sends a response message (normal or error) to the given request. One of // these methods should be called as a response to SignalUnknownAddress. // NOTE: You MUST call CreateConnection BEFORE SendBindingResponse. virtual void SendBindingResponse(StunMessage* request, const rtc::SocketAddress& addr); virtual void SendBindingErrorResponse( StunMessage* request, const rtc::SocketAddress& addr, int error_code, const std::string& reason); void set_proxy(const std::string& user_agent, const rtc::ProxyInfo& proxy) { user_agent_ = user_agent; proxy_ = proxy; } const std::string& user_agent() { return user_agent_; } const rtc::ProxyInfo& proxy() { return proxy_; } virtual void EnablePortPackets(); // Called if the port has no connections and is no longer useful. void Destroy(); virtual void OnMessage(rtc::Message *pmsg); // Debugging description of this port virtual std::string ToString() const; const rtc::IPAddress& ip() const { return ip_; } uint16_t min_port() { return min_port_; } uint16_t max_port() { return max_port_; } // Timeout shortening function to speed up unit tests. void set_timeout_delay(int delay) { timeout_delay_ = delay; } // This method will return local and remote username fragements from the // stun username attribute if present. bool ParseStunUsername(const StunMessage* stun_msg, std::string* local_username, std::string* remote_username) const; void CreateStunUsername(const std::string& remote_username, std::string* stun_username_attr_str) const; bool MaybeIceRoleConflict(const rtc::SocketAddress& addr, IceMessage* stun_msg, const std::string& remote_ufrag); // Called when a packet has been sent to the socket. // This is made pure virtual to notify subclasses of Port that they MUST // listen to AsyncPacketSocket::SignalSentPacket and then call // PortInterface::OnSentPacket. virtual void OnSentPacket(rtc::AsyncPacketSocket* socket, const rtc::SentPacket& sent_packet) = 0; // Called when the socket is currently able to send. void OnReadyToSend(); // Called when the Connection discovers a local peer reflexive candidate. // Returns the index of the new local candidate. size_t AddPrflxCandidate(const Candidate& local); void set_candidate_filter(uint32_t candidate_filter) { candidate_filter_ = candidate_filter; } protected: enum { MSG_DEAD = 0, MSG_FIRST_AVAILABLE }; void set_type(const std::string& type) { type_ = type; } void AddAddress(const rtc::SocketAddress& address, const rtc::SocketAddress& base_address, const rtc::SocketAddress& related_address, const std::string& protocol, const std::string& relay_protocol, const std::string& tcptype, const std::string& type, uint32_t type_preference, uint32_t relay_preference, bool final); // Adds the given connection to the list. (Deleting removes them.) void AddConnection(Connection* conn); // Called when a packet is received from an unknown address that is not // currently a connection. If this is an authenticated STUN binding request, // then we will signal the client. void OnReadPacket(const char* data, size_t size, const rtc::SocketAddress& addr, ProtocolType proto); // If the given data comprises a complete and correct STUN message then the // return value is true, otherwise false. If the message username corresponds // with this port's username fragment, msg will contain the parsed STUN // message. Otherwise, the function may send a STUN response internally. // remote_username contains the remote fragment of the STUN username. bool GetStunMessage(const char* data, size_t size, const rtc::SocketAddress& addr, IceMessage** out_msg, std::string* out_username); // Checks if the address in addr is compatible with the port's ip. bool IsCompatibleAddress(const rtc::SocketAddress& addr); // Returns default DSCP value. rtc::DiffServCodePoint DefaultDscpValue() const { // No change from what MediaChannel set. return rtc::DSCP_NO_CHANGE; } uint32_t candidate_filter() { return candidate_filter_; } private: void Construct(); // Called when one of our connections deletes itself. void OnConnectionDestroyed(Connection* conn); // Whether this port is dead, and hence, should be destroyed on the controlled // side. bool dead() const { return ice_role_ == ICEROLE_CONTROLLED && connections_.empty(); } rtc::Thread* thread_; rtc::PacketSocketFactory* factory_; std::string type_; bool send_retransmit_count_attribute_; rtc::Network* network_; rtc::IPAddress ip_; uint16_t min_port_; uint16_t max_port_; std::string content_name_; int component_; uint32_t generation_; // In order to establish a connection to this Port (so that real data can be // sent through), the other side must send us a STUN binding request that is // authenticated with this username_fragment and password. // PortAllocatorSession will provide these username_fragment and password. // // Note: we should always use username_fragment() instead of using // |ice_username_fragment_| directly. For the details see the comment on // username_fragment(). std::string ice_username_fragment_; std::string password_; std::vector candidates_; AddressMap connections_; int timeout_delay_; bool enable_port_packets_; IceRole ice_role_; uint64_t tiebreaker_; bool shared_socket_; // Information to use when going through a proxy. std::string user_agent_; rtc::ProxyInfo proxy_; // Candidate filter is pushed down to Port such that each Port could // make its own decision on how to create candidates. For example, // when IceTransportsType is set to relay, both RelayPort and // TurnPort will hide raddr to avoid local address leakage. uint32_t candidate_filter_; friend class Connection; }; // Represents a communication link between a port on the local client and a // port on the remote client. class Connection : public rtc::MessageHandler, public sigslot::has_slots<> { public: struct SentPing { SentPing(const std::string id, uint32_t sent_time) : id(id), sent_time(sent_time) {} std::string id; uint32_t sent_time; }; // States are from RFC 5245. http://tools.ietf.org/html/rfc5245#section-5.7.4 enum State { STATE_WAITING = 0, // Check has not been performed, Waiting pair on CL. STATE_INPROGRESS, // Check has been sent, transaction is in progress. STATE_SUCCEEDED, // Check already done, produced a successful result. STATE_FAILED // Check for this connection failed. }; virtual ~Connection(); // The local port where this connection sends and receives packets. Port* port() { return port_; } const Port* port() const { return port_; } // Returns the description of the local port virtual const Candidate& local_candidate() const; // Returns the description of the remote port to which we communicate. const Candidate& remote_candidate() const { return remote_candidate_; } // Returns the pair priority. uint64_t priority() const; enum WriteState { STATE_WRITABLE = 0, // we have received ping responses recently STATE_WRITE_UNRELIABLE = 1, // we have had a few ping failures STATE_WRITE_INIT = 2, // we have yet to receive a ping response STATE_WRITE_TIMEOUT = 3, // we have had a large number of ping failures }; WriteState write_state() const { return write_state_; } bool writable() const { return write_state_ == STATE_WRITABLE; } bool receiving() const { return receiving_; } // Determines whether the connection has finished connecting. This can only // be false for TCP connections. bool connected() const { return connected_; } bool weak() const { return !(writable() && receiving() && connected()); } bool active() const { return write_state_ != STATE_WRITE_TIMEOUT; } // A connection is dead if it can be safely deleted. bool dead(uint32_t now) const; // Estimate of the round-trip time over this connection. uint32_t rtt() const { return rtt_; } size_t sent_total_bytes(); size_t sent_bytes_second(); // Used to track how many packets are discarded in the application socket due // to errors. size_t sent_discarded_packets(); size_t sent_total_packets(); size_t recv_total_bytes(); size_t recv_bytes_second(); sigslot::signal1 SignalStateChange; // Sent when the connection has decided that it is no longer of value. It // will delete itself immediately after this call. sigslot::signal1 SignalDestroyed; // The connection can send and receive packets asynchronously. This matches // the interface of AsyncPacketSocket, which may use UDP or TCP under the // covers. virtual int Send(const void* data, size_t size, const rtc::PacketOptions& options) = 0; // Error if Send() returns < 0 virtual int GetError() = 0; sigslot::signal4 SignalReadPacket; sigslot::signal1 SignalReadyToSend; // Called when a packet is received on this connection. void OnReadPacket(const char* data, size_t size, const rtc::PacketTime& packet_time); // Called when the socket is currently able to send. void OnReadyToSend(); // Called when a connection is determined to be no longer useful to us. We // still keep it around in case the other side wants to use it. But we can // safely stop pinging on it and we can allow it to time out if the other // side stops using it as well. bool pruned() const { return pruned_; } void Prune(); bool use_candidate_attr() const { return use_candidate_attr_; } void set_use_candidate_attr(bool enable); bool nominated() const { return nominated_; } void set_nominated(bool nominated) { nominated_ = nominated; } void set_remote_ice_mode(IceMode mode) { remote_ice_mode_ = mode; } void set_receiving_timeout(uint32_t receiving_timeout_ms) { receiving_timeout_ = receiving_timeout_ms; } // Makes the connection go away. void Destroy(); // Makes the connection go away, in a failed state. void FailAndDestroy(); // Checks that the state of this connection is up-to-date. The argument is // the current time, which is compared against various timeouts. void UpdateState(uint32_t now); // Called when this connection should try checking writability again. uint32_t last_ping_sent() const { return last_ping_sent_; } void Ping(uint32_t now); void ReceivedPingResponse(); uint32_t last_ping_response_received() const { return last_ping_response_received_; } // Called whenever a valid ping is received on this connection. This is // public because the connection intercepts the first ping for us. uint32_t last_ping_received() const { return last_ping_received_; } void ReceivedPing(); // Handles the binding request; sends a response if this is a valid request. void HandleBindingRequest(IceMessage* msg); // Debugging description of this connection std::string ToDebugId() const; std::string ToString() const; std::string ToSensitiveString() const; // Prints pings_since_last_response_ into a string. void PrintPingsSinceLastResponse(std::string* pings, size_t max); bool reported() const { return reported_; } void set_reported(bool reported) { reported_ = reported;} // This signal will be fired if this connection is nominated by the // controlling side. sigslot::signal1 SignalNominated; // Invoked when Connection receives STUN error response with 487 code. void HandleRoleConflictFromPeer(); State state() const { return state_; } IceMode remote_ice_mode() const { return remote_ice_mode_; } // Update the ICE password of the remote candidate if |ice_ufrag| matches // the candidate's ufrag, and the candidate's passwrod has not been set. void MaybeSetRemoteIceCredentials(const std::string& ice_ufrag, const std::string& ice_pwd); // If |remote_candidate_| is peer reflexive and is equivalent to // |new_candidate| except the type, update |remote_candidate_| to // |new_candidate|. void MaybeUpdatePeerReflexiveCandidate(const Candidate& new_candidate); // Returns the last received time of any data, stun request, or stun // response in milliseconds uint32_t last_received() const; protected: enum { MSG_DELETE = 0, MSG_FIRST_AVAILABLE }; // Constructs a new connection to the given remote port. Connection(Port* port, size_t index, const Candidate& candidate); // Called back when StunRequestManager has a stun packet to send void OnSendStunPacket(const void* data, size_t size, StunRequest* req); // Callbacks from ConnectionRequest virtual void OnConnectionRequestResponse(ConnectionRequest* req, StunMessage* response); void OnConnectionRequestErrorResponse(ConnectionRequest* req, StunMessage* response); void OnConnectionRequestTimeout(ConnectionRequest* req); void OnConnectionRequestSent(ConnectionRequest* req); // Changes the state and signals if necessary. void set_write_state(WriteState value); void set_receiving(bool value); void set_state(State state); void set_connected(bool value); void OnMessage(rtc::Message *pmsg); Port* port_; size_t local_candidate_index_; Candidate remote_candidate_; WriteState write_state_; bool receiving_; bool connected_; bool pruned_; // By default |use_candidate_attr_| flag will be true, // as we will be using aggressive nomination. // But when peer is ice-lite, this flag "must" be initialized to false and // turn on when connection becomes "best connection". bool use_candidate_attr_; // Whether this connection has been nominated by the controlling side via // the use_candidate attribute. bool nominated_; IceMode remote_ice_mode_; StunRequestManager requests_; uint32_t rtt_; uint32_t last_ping_sent_; // last time we sent a ping to the other side uint32_t last_ping_received_; // last time we received a ping from the other // side uint32_t last_data_received_; uint32_t last_ping_response_received_; std::vector pings_since_last_response_; rtc::RateTracker recv_rate_tracker_; rtc::RateTracker send_rate_tracker_; uint32_t sent_packets_discarded_; uint32_t sent_packets_total_; private: void MaybeAddPrflxCandidate(ConnectionRequest* request, StunMessage* response); bool reported_; State state_; // Time duration to switch from receiving to not receiving. uint32_t receiving_timeout_; uint32_t time_created_ms_; friend class Port; friend class ConnectionRequest; }; // ProxyConnection defers all the interesting work to the port. class ProxyConnection : public Connection { public: ProxyConnection(Port* port, size_t index, const Candidate& remote_candidate); int Send(const void* data, size_t size, const rtc::PacketOptions& options) override; int GetError() override { return error_; } private: int error_ = 0; }; } // namespace cricket #endif // WEBRTC_P2P_BASE_PORT_H_