/* * Copyright 2012 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/p2p/base/turnport.h" #include #include "webrtc/p2p/base/common.h" #include "webrtc/p2p/base/stun.h" #include "webrtc/base/asyncpacketsocket.h" #include "webrtc/base/byteorder.h" #include "webrtc/base/common.h" #include "webrtc/base/logging.h" #include "webrtc/base/nethelpers.h" #include "webrtc/base/socketaddress.h" #include "webrtc/base/stringencode.h" namespace cricket { // TODO(juberti): Move to stun.h when relay messages have been renamed. static const int TURN_ALLOCATE_REQUEST = STUN_ALLOCATE_REQUEST; // TODO(juberti): Extract to turnmessage.h static const int TURN_DEFAULT_PORT = 3478; static const int TURN_CHANNEL_NUMBER_START = 0x4000; static const int TURN_PERMISSION_TIMEOUT = 5 * 60 * 1000; // 5 minutes static const size_t TURN_CHANNEL_HEADER_SIZE = 4U; // Retry at most twice (i.e. three different ALLOCATE requests) on // STUN_ERROR_ALLOCATION_MISMATCH error per rfc5766. static const size_t MAX_ALLOCATE_MISMATCH_RETRIES = 2; inline bool IsTurnChannelData(uint16_t msg_type) { return ((msg_type & 0xC000) == 0x4000); // MSB are 0b01 } static int GetRelayPreference(cricket::ProtocolType proto, bool secure) { int relay_preference = ICE_TYPE_PREFERENCE_RELAY; if (proto == cricket::PROTO_TCP) { relay_preference -= 1; if (secure) relay_preference -= 1; } ASSERT(relay_preference >= 0); return relay_preference; } class TurnAllocateRequest : public StunRequest { public: explicit TurnAllocateRequest(TurnPort* port); void Prepare(StunMessage* request) override; void OnSent() override; void OnResponse(StunMessage* response) override; void OnErrorResponse(StunMessage* response) override; void OnTimeout() override; private: // Handles authentication challenge from the server. void OnAuthChallenge(StunMessage* response, int code); void OnTryAlternate(StunMessage* response, int code); void OnUnknownAttribute(StunMessage* response); TurnPort* port_; }; class TurnRefreshRequest : public StunRequest { public: explicit TurnRefreshRequest(TurnPort* port); void Prepare(StunMessage* request) override; void OnSent() override; void OnResponse(StunMessage* response) override; void OnErrorResponse(StunMessage* response) override; void OnTimeout() override; void set_lifetime(int lifetime) { lifetime_ = lifetime; } private: TurnPort* port_; int lifetime_; }; class TurnCreatePermissionRequest : public StunRequest, public sigslot::has_slots<> { public: TurnCreatePermissionRequest(TurnPort* port, TurnEntry* entry, const rtc::SocketAddress& ext_addr); void Prepare(StunMessage* request) override; void OnSent() override; void OnResponse(StunMessage* response) override; void OnErrorResponse(StunMessage* response) override; void OnTimeout() override; private: void OnEntryDestroyed(TurnEntry* entry); TurnPort* port_; TurnEntry* entry_; rtc::SocketAddress ext_addr_; }; class TurnChannelBindRequest : public StunRequest, public sigslot::has_slots<> { public: TurnChannelBindRequest(TurnPort* port, TurnEntry* entry, int channel_id, const rtc::SocketAddress& ext_addr); void Prepare(StunMessage* request) override; void OnSent() override; void OnResponse(StunMessage* response) override; void OnErrorResponse(StunMessage* response) override; void OnTimeout() override; private: void OnEntryDestroyed(TurnEntry* entry); TurnPort* port_; TurnEntry* entry_; int channel_id_; rtc::SocketAddress ext_addr_; }; // Manages a "connection" to a remote destination. We will attempt to bring up // a channel for this remote destination to reduce the overhead of sending data. class TurnEntry : public sigslot::has_slots<> { public: enum BindState { STATE_UNBOUND, STATE_BINDING, STATE_BOUND }; TurnEntry(TurnPort* port, int channel_id, const rtc::SocketAddress& ext_addr); TurnPort* port() { return port_; } int channel_id() const { return channel_id_; } const rtc::SocketAddress& address() const { return ext_addr_; } BindState state() const { return state_; } // Helper methods to send permission and channel bind requests. void SendCreatePermissionRequest(); void SendChannelBindRequest(int delay); // Sends a packet to the given destination address. // This will wrap the packet in STUN if necessary. int Send(const void* data, size_t size, bool payload, const rtc::PacketOptions& options); void OnCreatePermissionSuccess(); void OnCreatePermissionError(StunMessage* response, int code); void OnChannelBindSuccess(); void OnChannelBindError(StunMessage* response, int code); // Signal sent when TurnEntry is destroyed. sigslot::signal1 SignalDestroyed; private: TurnPort* port_; int channel_id_; rtc::SocketAddress ext_addr_; BindState state_; }; TurnPort::TurnPort(rtc::Thread* thread, rtc::PacketSocketFactory* factory, rtc::Network* network, rtc::AsyncPacketSocket* socket, const std::string& username, const std::string& password, const ProtocolAddress& server_address, const RelayCredentials& credentials, int server_priority, const std::string& origin) : Port(thread, factory, network, socket->GetLocalAddress().ipaddr(), username, password), server_address_(server_address), credentials_(credentials), socket_(socket), resolver_(NULL), error_(0), request_manager_(thread), next_channel_number_(TURN_CHANNEL_NUMBER_START), state_(STATE_CONNECTING), server_priority_(server_priority), allocate_mismatch_retries_(0) { request_manager_.SignalSendPacket.connect(this, &TurnPort::OnSendStunPacket); request_manager_.set_origin(origin); } TurnPort::TurnPort(rtc::Thread* thread, rtc::PacketSocketFactory* factory, rtc::Network* network, const rtc::IPAddress& ip, uint16_t min_port, uint16_t max_port, const std::string& username, const std::string& password, const ProtocolAddress& server_address, const RelayCredentials& credentials, int server_priority, const std::string& origin) : Port(thread, RELAY_PORT_TYPE, factory, network, ip, min_port, max_port, username, password), server_address_(server_address), credentials_(credentials), socket_(NULL), resolver_(NULL), error_(0), request_manager_(thread), next_channel_number_(TURN_CHANNEL_NUMBER_START), state_(STATE_CONNECTING), server_priority_(server_priority), allocate_mismatch_retries_(0) { request_manager_.SignalSendPacket.connect(this, &TurnPort::OnSendStunPacket); request_manager_.set_origin(origin); } TurnPort::~TurnPort() { // TODO(juberti): Should this even be necessary? // release the allocation by sending a refresh with // lifetime 0. if (ready()) { TurnRefreshRequest bye(this); bye.set_lifetime(0); SendRequest(&bye, 0); } while (!entries_.empty()) { DestroyEntry(entries_.front()->address()); } if (resolver_) { resolver_->Destroy(false); } if (!SharedSocket()) { delete socket_; } } rtc::SocketAddress TurnPort::GetLocalAddress() const { return socket_ ? socket_->GetLocalAddress() : rtc::SocketAddress(); } void TurnPort::PrepareAddress() { if (credentials_.username.empty() || credentials_.password.empty()) { LOG(LS_ERROR) << "Allocation can't be started without setting the" << " TURN server credentials for the user."; OnAllocateError(); return; } if (!server_address_.address.port()) { // We will set default TURN port, if no port is set in the address. server_address_.address.SetPort(TURN_DEFAULT_PORT); } if (server_address_.address.IsUnresolved()) { ResolveTurnAddress(server_address_.address); } else { // If protocol family of server address doesn't match with local, return. if (!IsCompatibleAddress(server_address_.address)) { LOG(LS_ERROR) << "IP address family does not match: " << "server: " << server_address_.address.family() << "local: " << ip().family(); OnAllocateError(); return; } // Insert the current address to prevent redirection pingpong. attempted_server_addresses_.insert(server_address_.address); LOG_J(LS_INFO, this) << "Trying to connect to TURN server via " << ProtoToString(server_address_.proto) << " @ " << server_address_.address.ToSensitiveString(); if (!CreateTurnClientSocket()) { LOG(LS_ERROR) << "Failed to create TURN client socket"; OnAllocateError(); return; } if (server_address_.proto == PROTO_UDP) { // If its UDP, send AllocateRequest now. // For TCP and TLS AllcateRequest will be sent by OnSocketConnect. SendRequest(new TurnAllocateRequest(this), 0); } } } bool TurnPort::CreateTurnClientSocket() { ASSERT(!socket_ || SharedSocket()); if (server_address_.proto == PROTO_UDP && !SharedSocket()) { socket_ = socket_factory()->CreateUdpSocket( rtc::SocketAddress(ip(), 0), min_port(), max_port()); } else if (server_address_.proto == PROTO_TCP) { ASSERT(!SharedSocket()); int opts = rtc::PacketSocketFactory::OPT_STUN; // If secure bit is enabled in server address, use TLS over TCP. if (server_address_.secure) { opts |= rtc::PacketSocketFactory::OPT_TLS; } socket_ = socket_factory()->CreateClientTcpSocket( rtc::SocketAddress(ip(), 0), server_address_.address, proxy(), user_agent(), opts); } if (!socket_) { error_ = SOCKET_ERROR; return false; } // Apply options if any. for (SocketOptionsMap::iterator iter = socket_options_.begin(); iter != socket_options_.end(); ++iter) { socket_->SetOption(iter->first, iter->second); } if (!SharedSocket()) { // If socket is shared, AllocationSequence will receive the packet. socket_->SignalReadPacket.connect(this, &TurnPort::OnReadPacket); } socket_->SignalReadyToSend.connect(this, &TurnPort::OnReadyToSend); // TCP port is ready to send stun requests after the socket is connected, // while UDP port is ready to do so once the socket is created. if (server_address_.proto == PROTO_TCP) { socket_->SignalConnect.connect(this, &TurnPort::OnSocketConnect); socket_->SignalClose.connect(this, &TurnPort::OnSocketClose); } else { state_ = STATE_CONNECTED; } return true; } void TurnPort::OnSocketConnect(rtc::AsyncPacketSocket* socket) { ASSERT(server_address_.proto == PROTO_TCP); // Do not use this port if the socket bound to a different address than // the one we asked for. This is seen in Chrome, where TCP sockets cannot be // given a binding address, and the platform is expected to pick the // correct local address. // However, there are two situations in which we allow the bound address to // differ from the requested address: 1. The bound address is the loopback // address. This happens when a proxy forces TCP to bind to only the // localhost address (see issue 3927). 2. The bound address is the "any // address". This happens when multiple_routes is disabled (see issue 4780). if (socket->GetLocalAddress().ipaddr() != ip()) { if (socket->GetLocalAddress().IsLoopbackIP()) { LOG(LS_WARNING) << "Socket is bound to a different address:" << socket->GetLocalAddress().ipaddr().ToString() << ", rather then the local port:" << ip().ToString() << ". Still allowing it since it's localhost."; } else if (IPIsAny(ip())) { LOG(LS_WARNING) << "Socket is bound to a different address:" << socket->GetLocalAddress().ipaddr().ToString() << ", rather then the local port:" << ip().ToString() << ". Still allowing it since it's any address" << ", possibly caused by multiple_routes being disabled."; } else { LOG(LS_WARNING) << "Socket is bound to a different address:" << socket->GetLocalAddress().ipaddr().ToString() << ", rather then the local port:" << ip().ToString() << ". Discarding TURN port."; OnAllocateError(); return; } } state_ = STATE_CONNECTED; // It is ready to send stun requests. if (server_address_.address.IsUnresolved()) { server_address_.address = socket_->GetRemoteAddress(); } LOG(LS_INFO) << "TurnPort connected to " << socket->GetRemoteAddress() << " using tcp."; SendRequest(new TurnAllocateRequest(this), 0); } void TurnPort::OnSocketClose(rtc::AsyncPacketSocket* socket, int error) { LOG_J(LS_WARNING, this) << "Connection with server failed, error=" << error; ASSERT(socket == socket_); if (!ready()) { OnAllocateError(); } request_manager_.Clear(); state_ = STATE_DISCONNECTED; } void TurnPort::OnAllocateMismatch() { if (allocate_mismatch_retries_ >= MAX_ALLOCATE_MISMATCH_RETRIES) { LOG_J(LS_WARNING, this) << "Giving up on the port after " << allocate_mismatch_retries_ << " retries for STUN_ERROR_ALLOCATION_MISMATCH"; OnAllocateError(); return; } LOG_J(LS_INFO, this) << "Allocating a new socket after " << "STUN_ERROR_ALLOCATION_MISMATCH, retry = " << allocate_mismatch_retries_ + 1; if (SharedSocket()) { ResetSharedSocket(); } else { delete socket_; } socket_ = NULL; PrepareAddress(); ++allocate_mismatch_retries_; } Connection* TurnPort::CreateConnection(const Candidate& address, CandidateOrigin origin) { // TURN-UDP can only connect to UDP candidates. if (address.protocol() != UDP_PROTOCOL_NAME) { return NULL; } if (!IsCompatibleAddress(address.address())) { return NULL; } if (state_ == STATE_DISCONNECTED) { return NULL; } // Create an entry, if needed, so we can get our permissions set up correctly. CreateEntry(address.address()); // A TURN port will have two candiates, STUN and TURN. STUN may not // present in all cases. If present stun candidate will be added first // and TURN candidate later. for (size_t index = 0; index < Candidates().size(); ++index) { if (Candidates()[index].type() == RELAY_PORT_TYPE) { ProxyConnection* conn = new ProxyConnection(this, index, address); conn->SignalDestroyed.connect(this, &TurnPort::OnConnectionDestroyed); AddConnection(conn); return conn; } } return NULL; } int TurnPort::SetOption(rtc::Socket::Option opt, int value) { if (!socket_) { // If socket is not created yet, these options will be applied during socket // creation. socket_options_[opt] = value; return 0; } return socket_->SetOption(opt, value); } int TurnPort::GetOption(rtc::Socket::Option opt, int* value) { if (!socket_) { SocketOptionsMap::const_iterator it = socket_options_.find(opt); if (it == socket_options_.end()) { return -1; } *value = it->second; return 0; } return socket_->GetOption(opt, value); } int TurnPort::GetError() { return error_; } int TurnPort::SendTo(const void* data, size_t size, const rtc::SocketAddress& addr, const rtc::PacketOptions& options, bool payload) { // Try to find an entry for this specific address; we should have one. TurnEntry* entry = FindEntry(addr); if (!entry) { LOG(LS_ERROR) << "Did not find the TurnEntry for address " << addr; return 0; } if (!ready()) { error_ = EWOULDBLOCK; return SOCKET_ERROR; } // Send the actual contents to the server using the usual mechanism. int sent = entry->Send(data, size, payload, options); if (sent <= 0) { return SOCKET_ERROR; } // The caller of the function is expecting the number of user data bytes, // rather than the size of the packet. return static_cast(size); } void TurnPort::OnReadPacket( rtc::AsyncPacketSocket* socket, const char* data, size_t size, const rtc::SocketAddress& remote_addr, const rtc::PacketTime& packet_time) { ASSERT(socket == socket_); // This is to guard against a STUN response from previous server after // alternative server redirection. TODO(guoweis): add a unit test for this // race condition. if (remote_addr != server_address_.address) { LOG_J(LS_WARNING, this) << "Discarding TURN message from unknown address:" << remote_addr.ToString() << ", server_address_:" << server_address_.address.ToString(); return; } // The message must be at least the size of a channel header. if (size < TURN_CHANNEL_HEADER_SIZE) { LOG_J(LS_WARNING, this) << "Received TURN message that was too short"; return; } // Check the message type, to see if is a Channel Data message. // The message will either be channel data, a TURN data indication, or // a response to a previous request. uint16_t msg_type = rtc::GetBE16(data); if (IsTurnChannelData(msg_type)) { HandleChannelData(msg_type, data, size, packet_time); } else if (msg_type == TURN_DATA_INDICATION) { HandleDataIndication(data, size, packet_time); } else { if (SharedSocket() && (msg_type == STUN_BINDING_RESPONSE || msg_type == STUN_BINDING_ERROR_RESPONSE)) { LOG_J(LS_VERBOSE, this) << "Ignoring STUN binding response message on shared socket."; return; } // This must be a response for one of our requests. // Check success responses, but not errors, for MESSAGE-INTEGRITY. if (IsStunSuccessResponseType(msg_type) && !StunMessage::ValidateMessageIntegrity(data, size, hash())) { LOG_J(LS_WARNING, this) << "Received TURN message with invalid " << "message integrity, msg_type=" << msg_type; return; } request_manager_.CheckResponse(data, size); } } void TurnPort::OnReadyToSend(rtc::AsyncPacketSocket* socket) { if (ready()) { Port::OnReadyToSend(); } } // Update current server address port with the alternate server address port. bool TurnPort::SetAlternateServer(const rtc::SocketAddress& address) { // Check if we have seen this address before and reject if we did. AttemptedServerSet::iterator iter = attempted_server_addresses_.find(address); if (iter != attempted_server_addresses_.end()) { LOG_J(LS_WARNING, this) << "Redirection to [" << address.ToSensitiveString() << "] ignored, allocation failed."; return false; } // If protocol family of server address doesn't match with local, return. if (!IsCompatibleAddress(address)) { LOG(LS_WARNING) << "Server IP address family does not match with " << "local host address family type"; return false; } LOG_J(LS_INFO, this) << "Redirecting from TURN server [" << server_address_.address.ToSensitiveString() << "] to TURN server [" << address.ToSensitiveString() << "]"; server_address_ = ProtocolAddress(address, server_address_.proto, server_address_.secure); // Insert the current address to prevent redirection pingpong. attempted_server_addresses_.insert(server_address_.address); return true; } void TurnPort::ResolveTurnAddress(const rtc::SocketAddress& address) { if (resolver_) return; resolver_ = socket_factory()->CreateAsyncResolver(); resolver_->SignalDone.connect(this, &TurnPort::OnResolveResult); resolver_->Start(address); } void TurnPort::OnResolveResult(rtc::AsyncResolverInterface* resolver) { ASSERT(resolver == resolver_); // If DNS resolve is failed when trying to connect to the server using TCP, // one of the reason could be due to DNS queries blocked by firewall. // In such cases we will try to connect to the server with hostname, assuming // socket layer will resolve the hostname through a HTTP proxy (if any). if (resolver_->GetError() != 0 && server_address_.proto == PROTO_TCP) { if (!CreateTurnClientSocket()) { OnAllocateError(); } return; } // Copy the original server address in |resolved_address|. For TLS based // sockets we need hostname along with resolved address. rtc::SocketAddress resolved_address = server_address_.address; if (resolver_->GetError() != 0 || !resolver_->GetResolvedAddress(ip().family(), &resolved_address)) { LOG_J(LS_WARNING, this) << "TURN host lookup received error " << resolver_->GetError(); error_ = resolver_->GetError(); OnAllocateError(); return; } // Signal needs both resolved and unresolved address. After signal is sent // we can copy resolved address back into |server_address_|. SignalResolvedServerAddress(this, server_address_.address, resolved_address); server_address_.address = resolved_address; PrepareAddress(); } void TurnPort::OnSendStunPacket(const void* data, size_t size, StunRequest* request) { ASSERT(connected()); rtc::PacketOptions options(DefaultDscpValue()); if (Send(data, size, options) < 0) { LOG_J(LS_ERROR, this) << "Failed to send TURN message, err=" << socket_->GetError(); } } void TurnPort::OnStunAddress(const rtc::SocketAddress& address) { // STUN Port will discover STUN candidate, as it's supplied with first TURN // server address. // Why not using this address? - P2PTransportChannel will start creating // connections after first candidate, which means it could start creating the // connections before TURN candidate added. For that to handle, we need to // supply STUN candidate from this port to UDPPort, and TurnPort should have // handle to UDPPort to pass back the address. } void TurnPort::OnAllocateSuccess(const rtc::SocketAddress& address, const rtc::SocketAddress& stun_address) { state_ = STATE_READY; rtc::SocketAddress related_address = stun_address; if (!(candidate_filter() & CF_REFLEXIVE)) { // If candidate filter only allows relay type of address, empty raddr to // avoid local address leakage. related_address = rtc::EmptySocketAddressWithFamily(stun_address.family()); } // For relayed candidate, Base is the candidate itself. AddAddress(address, // Candidate address. address, // Base address. related_address, // Related address. UDP_PROTOCOL_NAME, ProtoToString(server_address_.proto), // The first hop protocol. "", // TCP canddiate type, empty for turn candidates. RELAY_PORT_TYPE, GetRelayPreference(server_address_.proto, server_address_.secure), server_priority_, true); } void TurnPort::OnAllocateError() { // We will send SignalPortError asynchronously as this can be sent during // port initialization. This way it will not be blocking other port // creation. thread()->Post(this, MSG_ERROR); } void TurnPort::OnMessage(rtc::Message* message) { if (message->message_id == MSG_ERROR) { SignalPortError(this); return; } else if (message->message_id == MSG_ALLOCATE_MISMATCH) { OnAllocateMismatch(); return; } else if (message->message_id == MSG_TRY_ALTERNATE_SERVER) { if (server_address().proto == PROTO_UDP) { // Send another allocate request to alternate server, with the received // realm and nonce values. SendRequest(new TurnAllocateRequest(this), 0); } else { // Since it's TCP, we have to delete the connected socket and reconnect // with the alternate server. PrepareAddress will send stun binding once // the new socket is connected. ASSERT(server_address().proto == PROTO_TCP); ASSERT(!SharedSocket()); delete socket_; socket_ = NULL; PrepareAddress(); } return; } Port::OnMessage(message); } void TurnPort::OnAllocateRequestTimeout() { OnAllocateError(); } void TurnPort::HandleDataIndication(const char* data, size_t size, const rtc::PacketTime& packet_time) { // Read in the message, and process according to RFC5766, Section 10.4. rtc::ByteBuffer buf(data, size); TurnMessage msg; if (!msg.Read(&buf)) { LOG_J(LS_WARNING, this) << "Received invalid TURN data indication"; return; } // Check mandatory attributes. const StunAddressAttribute* addr_attr = msg.GetAddress(STUN_ATTR_XOR_PEER_ADDRESS); if (!addr_attr) { LOG_J(LS_WARNING, this) << "Missing STUN_ATTR_XOR_PEER_ADDRESS attribute " << "in data indication."; return; } const StunByteStringAttribute* data_attr = msg.GetByteString(STUN_ATTR_DATA); if (!data_attr) { LOG_J(LS_WARNING, this) << "Missing STUN_ATTR_DATA attribute in " << "data indication."; return; } // Verify that the data came from somewhere we think we have a permission for. rtc::SocketAddress ext_addr(addr_attr->GetAddress()); if (!HasPermission(ext_addr.ipaddr())) { LOG_J(LS_WARNING, this) << "Received TURN data indication with invalid " << "peer address, addr=" << ext_addr.ToSensitiveString(); return; } DispatchPacket(data_attr->bytes(), data_attr->length(), ext_addr, PROTO_UDP, packet_time); } void TurnPort::HandleChannelData(int channel_id, const char* data, size_t size, const rtc::PacketTime& packet_time) { // Read the message, and process according to RFC5766, Section 11.6. // 0 1 2 3 // 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // | Channel Number | Length | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // | | // / Application Data / // / / // | | // | +-------------------------------+ // | | // +-------------------------------+ // Extract header fields from the message. uint16_t len = rtc::GetBE16(data + 2); if (len > size - TURN_CHANNEL_HEADER_SIZE) { LOG_J(LS_WARNING, this) << "Received TURN channel data message with " << "incorrect length, len=" << len; return; } // Allowing messages larger than |len|, as ChannelData can be padded. TurnEntry* entry = FindEntry(channel_id); if (!entry) { LOG_J(LS_WARNING, this) << "Received TURN channel data message for invalid " << "channel, channel_id=" << channel_id; return; } DispatchPacket(data + TURN_CHANNEL_HEADER_SIZE, len, entry->address(), PROTO_UDP, packet_time); } void TurnPort::DispatchPacket(const char* data, size_t size, const rtc::SocketAddress& remote_addr, ProtocolType proto, const rtc::PacketTime& packet_time) { if (Connection* conn = GetConnection(remote_addr)) { conn->OnReadPacket(data, size, packet_time); } else { Port::OnReadPacket(data, size, remote_addr, proto); } } bool TurnPort::ScheduleRefresh(int lifetime) { // Lifetime is in seconds; we schedule a refresh for one minute less. if (lifetime < 2 * 60) { LOG_J(LS_WARNING, this) << "Received response with lifetime that was " << "too short, lifetime=" << lifetime; return false; } int delay = (lifetime - 60) * 1000; SendRequest(new TurnRefreshRequest(this), delay); LOG_J(LS_INFO, this) << "Scheduled refresh in " << delay << "ms."; return true; } void TurnPort::SendRequest(StunRequest* req, int delay) { request_manager_.SendDelayed(req, delay); } void TurnPort::AddRequestAuthInfo(StunMessage* msg) { // If we've gotten the necessary data from the server, add it to our request. VERIFY(!hash_.empty()); VERIFY(msg->AddAttribute(new StunByteStringAttribute( STUN_ATTR_USERNAME, credentials_.username))); VERIFY(msg->AddAttribute(new StunByteStringAttribute( STUN_ATTR_REALM, realm_))); VERIFY(msg->AddAttribute(new StunByteStringAttribute( STUN_ATTR_NONCE, nonce_))); VERIFY(msg->AddMessageIntegrity(hash())); } int TurnPort::Send(const void* data, size_t len, const rtc::PacketOptions& options) { return socket_->SendTo(data, len, server_address_.address, options); } void TurnPort::UpdateHash() { VERIFY(ComputeStunCredentialHash(credentials_.username, realm_, credentials_.password, &hash_)); } bool TurnPort::UpdateNonce(StunMessage* response) { // When stale nonce error received, we should update // hash and store realm and nonce. // Check the mandatory attributes. const StunByteStringAttribute* realm_attr = response->GetByteString(STUN_ATTR_REALM); if (!realm_attr) { LOG(LS_ERROR) << "Missing STUN_ATTR_REALM attribute in " << "stale nonce error response."; return false; } set_realm(realm_attr->GetString()); const StunByteStringAttribute* nonce_attr = response->GetByteString(STUN_ATTR_NONCE); if (!nonce_attr) { LOG(LS_ERROR) << "Missing STUN_ATTR_NONCE attribute in " << "stale nonce error response."; return false; } set_nonce(nonce_attr->GetString()); return true; } static bool MatchesIP(TurnEntry* e, rtc::IPAddress ipaddr) { return e->address().ipaddr() == ipaddr; } bool TurnPort::HasPermission(const rtc::IPAddress& ipaddr) const { return (std::find_if(entries_.begin(), entries_.end(), std::bind2nd(std::ptr_fun(MatchesIP), ipaddr)) != entries_.end()); } static bool MatchesAddress(TurnEntry* e, rtc::SocketAddress addr) { return e->address() == addr; } TurnEntry* TurnPort::FindEntry(const rtc::SocketAddress& addr) const { EntryList::const_iterator it = std::find_if(entries_.begin(), entries_.end(), std::bind2nd(std::ptr_fun(MatchesAddress), addr)); return (it != entries_.end()) ? *it : NULL; } static bool MatchesChannelId(TurnEntry* e, int id) { return e->channel_id() == id; } TurnEntry* TurnPort::FindEntry(int channel_id) const { EntryList::const_iterator it = std::find_if(entries_.begin(), entries_.end(), std::bind2nd(std::ptr_fun(MatchesChannelId), channel_id)); return (it != entries_.end()) ? *it : NULL; } TurnEntry* TurnPort::CreateEntry(const rtc::SocketAddress& addr) { ASSERT(FindEntry(addr) == NULL); TurnEntry* entry = new TurnEntry(this, next_channel_number_++, addr); entries_.push_back(entry); return entry; } void TurnPort::DestroyEntry(const rtc::SocketAddress& addr) { TurnEntry* entry = FindEntry(addr); ASSERT(entry != NULL); entry->SignalDestroyed(entry); entries_.remove(entry); delete entry; } void TurnPort::OnConnectionDestroyed(Connection* conn) { // Destroying TurnEntry for the connection, which is already destroyed. DestroyEntry(conn->remote_candidate().address()); } TurnAllocateRequest::TurnAllocateRequest(TurnPort* port) : StunRequest(new TurnMessage()), port_(port) { } void TurnAllocateRequest::Prepare(StunMessage* request) { // Create the request as indicated in RFC 5766, Section 6.1. request->SetType(TURN_ALLOCATE_REQUEST); StunUInt32Attribute* transport_attr = StunAttribute::CreateUInt32( STUN_ATTR_REQUESTED_TRANSPORT); transport_attr->SetValue(IPPROTO_UDP << 24); VERIFY(request->AddAttribute(transport_attr)); if (!port_->hash().empty()) { port_->AddRequestAuthInfo(request); } } void TurnAllocateRequest::OnSent() { LOG_J(LS_INFO, port_) << "TURN allocate request sent" << ", id=" << rtc::hex_encode(id()); StunRequest::OnSent(); } void TurnAllocateRequest::OnResponse(StunMessage* response) { LOG_J(LS_INFO, port_) << "TURN allocate requested successfully" << ", id=" << rtc::hex_encode(id()) << ", code=0" // Makes logging easier to parse. << ", rtt=" << Elapsed(); // Check mandatory attributes as indicated in RFC5766, Section 6.3. const StunAddressAttribute* mapped_attr = response->GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS); if (!mapped_attr) { LOG_J(LS_WARNING, port_) << "Missing STUN_ATTR_XOR_MAPPED_ADDRESS " << "attribute in allocate success response"; return; } // Using XOR-Mapped-Address for stun. port_->OnStunAddress(mapped_attr->GetAddress()); const StunAddressAttribute* relayed_attr = response->GetAddress(STUN_ATTR_XOR_RELAYED_ADDRESS); if (!relayed_attr) { LOG_J(LS_WARNING, port_) << "Missing STUN_ATTR_XOR_RELAYED_ADDRESS " << "attribute in allocate success response"; return; } const StunUInt32Attribute* lifetime_attr = response->GetUInt32(STUN_ATTR_TURN_LIFETIME); if (!lifetime_attr) { LOG_J(LS_WARNING, port_) << "Missing STUN_ATTR_TURN_LIFETIME attribute in " << "allocate success response"; return; } // Notify the port the allocate succeeded, and schedule a refresh request. port_->OnAllocateSuccess(relayed_attr->GetAddress(), mapped_attr->GetAddress()); port_->ScheduleRefresh(lifetime_attr->value()); } void TurnAllocateRequest::OnErrorResponse(StunMessage* response) { // Process error response according to RFC5766, Section 6.4. const StunErrorCodeAttribute* error_code = response->GetErrorCode(); LOG_J(LS_INFO, port_) << "Received TURN allocate error response" << ", id=" << rtc::hex_encode(id()) << ", code=" << error_code->code() << ", rtt=" << Elapsed(); switch (error_code->code()) { case STUN_ERROR_UNAUTHORIZED: // Unauthrorized. OnAuthChallenge(response, error_code->code()); break; case STUN_ERROR_TRY_ALTERNATE: OnTryAlternate(response, error_code->code()); break; case STUN_ERROR_ALLOCATION_MISMATCH: // We must handle this error async because trying to delete the socket in // OnErrorResponse will cause a deadlock on the socket. port_->thread()->Post(port_, TurnPort::MSG_ALLOCATE_MISMATCH); break; default: LOG_J(LS_WARNING, port_) << "Received TURN allocate error response" << ", id=" << rtc::hex_encode(id()) << ", code=" << error_code->code() << ", rtt=" << Elapsed(); port_->OnAllocateError(); } } void TurnAllocateRequest::OnTimeout() { LOG_J(LS_WARNING, port_) << "TURN allocate request " << rtc::hex_encode(id()) << " timout"; port_->OnAllocateRequestTimeout(); } void TurnAllocateRequest::OnAuthChallenge(StunMessage* response, int code) { // If we failed to authenticate even after we sent our credentials, fail hard. if (code == STUN_ERROR_UNAUTHORIZED && !port_->hash().empty()) { LOG_J(LS_WARNING, port_) << "Failed to authenticate with the server " << "after challenge."; port_->OnAllocateError(); return; } // Check the mandatory attributes. const StunByteStringAttribute* realm_attr = response->GetByteString(STUN_ATTR_REALM); if (!realm_attr) { LOG_J(LS_WARNING, port_) << "Missing STUN_ATTR_REALM attribute in " << "allocate unauthorized response."; return; } port_->set_realm(realm_attr->GetString()); const StunByteStringAttribute* nonce_attr = response->GetByteString(STUN_ATTR_NONCE); if (!nonce_attr) { LOG_J(LS_WARNING, port_) << "Missing STUN_ATTR_NONCE attribute in " << "allocate unauthorized response."; return; } port_->set_nonce(nonce_attr->GetString()); // Send another allocate request, with the received realm and nonce values. port_->SendRequest(new TurnAllocateRequest(port_), 0); } void TurnAllocateRequest::OnTryAlternate(StunMessage* response, int code) { // According to RFC 5389 section 11, there are use cases where // authentication of response is not possible, we're not validating // message integrity. // Get the alternate server address attribute value. const StunAddressAttribute* alternate_server_attr = response->GetAddress(STUN_ATTR_ALTERNATE_SERVER); if (!alternate_server_attr) { LOG_J(LS_WARNING, port_) << "Missing STUN_ATTR_ALTERNATE_SERVER " << "attribute in try alternate error response"; port_->OnAllocateError(); return; } if (!port_->SetAlternateServer(alternate_server_attr->GetAddress())) { port_->OnAllocateError(); return; } // Check the attributes. const StunByteStringAttribute* realm_attr = response->GetByteString(STUN_ATTR_REALM); if (realm_attr) { LOG_J(LS_INFO, port_) << "Applying STUN_ATTR_REALM attribute in " << "try alternate error response."; port_->set_realm(realm_attr->GetString()); } const StunByteStringAttribute* nonce_attr = response->GetByteString(STUN_ATTR_NONCE); if (nonce_attr) { LOG_J(LS_INFO, port_) << "Applying STUN_ATTR_NONCE attribute in " << "try alternate error response."; port_->set_nonce(nonce_attr->GetString()); } // For TCP, we can't close the original Tcp socket during handling a 300 as // we're still inside that socket's event handler. Doing so will cause // deadlock. port_->thread()->Post(port_, TurnPort::MSG_TRY_ALTERNATE_SERVER); } TurnRefreshRequest::TurnRefreshRequest(TurnPort* port) : StunRequest(new TurnMessage()), port_(port), lifetime_(-1) { } void TurnRefreshRequest::Prepare(StunMessage* request) { // Create the request as indicated in RFC 5766, Section 7.1. // No attributes need to be included. request->SetType(TURN_REFRESH_REQUEST); if (lifetime_ > -1) { VERIFY(request->AddAttribute(new StunUInt32Attribute( STUN_ATTR_LIFETIME, lifetime_))); } port_->AddRequestAuthInfo(request); } void TurnRefreshRequest::OnSent() { LOG_J(LS_INFO, port_) << "TURN refresh request sent" << ", id=" << rtc::hex_encode(id()); StunRequest::OnSent(); } void TurnRefreshRequest::OnResponse(StunMessage* response) { LOG_J(LS_INFO, port_) << "TURN refresh requested successfully" << ", id=" << rtc::hex_encode(id()) << ", code=0" // Makes logging easier to parse. << ", rtt=" << Elapsed(); // Check mandatory attributes as indicated in RFC5766, Section 7.3. const StunUInt32Attribute* lifetime_attr = response->GetUInt32(STUN_ATTR_TURN_LIFETIME); if (!lifetime_attr) { LOG_J(LS_WARNING, port_) << "Missing STUN_ATTR_TURN_LIFETIME attribute in " << "refresh success response."; return; } // Schedule a refresh based on the returned lifetime value. port_->ScheduleRefresh(lifetime_attr->value()); } void TurnRefreshRequest::OnErrorResponse(StunMessage* response) { const StunErrorCodeAttribute* error_code = response->GetErrorCode(); LOG_J(LS_INFO, port_) << "Received TURN refresh error response" << ", id=" << rtc::hex_encode(id()) << ", code=" << error_code->code() << ", rtt=" << Elapsed(); if (error_code->code() == STUN_ERROR_STALE_NONCE) { if (port_->UpdateNonce(response)) { // Send RefreshRequest immediately. port_->SendRequest(new TurnRefreshRequest(port_), 0); } } else { LOG_J(LS_WARNING, port_) << "Received TURN refresh error response" << ", id=" << rtc::hex_encode(id()) << ", code=" << error_code->code() << ", rtt=" << Elapsed(); } } void TurnRefreshRequest::OnTimeout() { LOG_J(LS_WARNING, port_) << "TURN refresh timeout " << rtc::hex_encode(id()); } TurnCreatePermissionRequest::TurnCreatePermissionRequest( TurnPort* port, TurnEntry* entry, const rtc::SocketAddress& ext_addr) : StunRequest(new TurnMessage()), port_(port), entry_(entry), ext_addr_(ext_addr) { entry_->SignalDestroyed.connect( this, &TurnCreatePermissionRequest::OnEntryDestroyed); } void TurnCreatePermissionRequest::Prepare(StunMessage* request) { // Create the request as indicated in RFC5766, Section 9.1. request->SetType(TURN_CREATE_PERMISSION_REQUEST); VERIFY(request->AddAttribute(new StunXorAddressAttribute( STUN_ATTR_XOR_PEER_ADDRESS, ext_addr_))); port_->AddRequestAuthInfo(request); } void TurnCreatePermissionRequest::OnSent() { LOG_J(LS_INFO, port_) << "TURN create permission request sent" << ", id=" << rtc::hex_encode(id()); StunRequest::OnSent(); } void TurnCreatePermissionRequest::OnResponse(StunMessage* response) { LOG_J(LS_INFO, port_) << "TURN permission requested successfully" << ", id=" << rtc::hex_encode(id()) << ", code=0" // Makes logging easier to parse. << ", rtt=" << Elapsed(); if (entry_) { entry_->OnCreatePermissionSuccess(); } } void TurnCreatePermissionRequest::OnErrorResponse(StunMessage* response) { const StunErrorCodeAttribute* error_code = response->GetErrorCode(); LOG_J(LS_WARNING, port_) << "Received TURN create permission error response" << ", id=" << rtc::hex_encode(id()) << ", code=" << error_code->code() << ", rtt=" << Elapsed(); if (entry_) { entry_->OnCreatePermissionError(response, error_code->code()); } } void TurnCreatePermissionRequest::OnTimeout() { LOG_J(LS_WARNING, port_) << "TURN create permission timeout " << rtc::hex_encode(id()); } void TurnCreatePermissionRequest::OnEntryDestroyed(TurnEntry* entry) { ASSERT(entry_ == entry); entry_ = NULL; } TurnChannelBindRequest::TurnChannelBindRequest( TurnPort* port, TurnEntry* entry, int channel_id, const rtc::SocketAddress& ext_addr) : StunRequest(new TurnMessage()), port_(port), entry_(entry), channel_id_(channel_id), ext_addr_(ext_addr) { entry_->SignalDestroyed.connect( this, &TurnChannelBindRequest::OnEntryDestroyed); } void TurnChannelBindRequest::Prepare(StunMessage* request) { // Create the request as indicated in RFC5766, Section 11.1. request->SetType(TURN_CHANNEL_BIND_REQUEST); VERIFY(request->AddAttribute(new StunUInt32Attribute( STUN_ATTR_CHANNEL_NUMBER, channel_id_ << 16))); VERIFY(request->AddAttribute(new StunXorAddressAttribute( STUN_ATTR_XOR_PEER_ADDRESS, ext_addr_))); port_->AddRequestAuthInfo(request); } void TurnChannelBindRequest::OnSent() { LOG_J(LS_INFO, port_) << "TURN channel bind request sent" << ", id=" << rtc::hex_encode(id()); StunRequest::OnSent(); } void TurnChannelBindRequest::OnResponse(StunMessage* response) { LOG_J(LS_INFO, port_) << "TURN channel bind requested successfully" << ", id=" << rtc::hex_encode(id()) << ", code=0" // Makes logging easier to parse. << ", rtt=" << Elapsed(); if (entry_) { entry_->OnChannelBindSuccess(); // Refresh the channel binding just under the permission timeout // threshold. The channel binding has a longer lifetime, but // this is the easiest way to keep both the channel and the // permission from expiring. int delay = TURN_PERMISSION_TIMEOUT - 60000; entry_->SendChannelBindRequest(delay); LOG_J(LS_INFO, port_) << "Scheduled channel bind in " << delay << "ms."; } } void TurnChannelBindRequest::OnErrorResponse(StunMessage* response) { const StunErrorCodeAttribute* error_code = response->GetErrorCode(); LOG_J(LS_WARNING, port_) << "Received TURN channel bind error response" << ", id=" << rtc::hex_encode(id()) << ", code=" << error_code->code() << ", rtt=" << Elapsed(); if (entry_) { entry_->OnChannelBindError(response, error_code->code()); } } void TurnChannelBindRequest::OnTimeout() { LOG_J(LS_WARNING, port_) << "TURN channel bind timeout " << rtc::hex_encode(id()); } void TurnChannelBindRequest::OnEntryDestroyed(TurnEntry* entry) { ASSERT(entry_ == entry); entry_ = NULL; } TurnEntry::TurnEntry(TurnPort* port, int channel_id, const rtc::SocketAddress& ext_addr) : port_(port), channel_id_(channel_id), ext_addr_(ext_addr), state_(STATE_UNBOUND) { // Creating permission for |ext_addr_|. SendCreatePermissionRequest(); } void TurnEntry::SendCreatePermissionRequest() { port_->SendRequest(new TurnCreatePermissionRequest( port_, this, ext_addr_), 0); } void TurnEntry::SendChannelBindRequest(int delay) { port_->SendRequest(new TurnChannelBindRequest( port_, this, channel_id_, ext_addr_), delay); } int TurnEntry::Send(const void* data, size_t size, bool payload, const rtc::PacketOptions& options) { rtc::ByteBuffer buf; if (state_ != STATE_BOUND) { // If we haven't bound the channel yet, we have to use a Send Indication. TurnMessage msg; msg.SetType(TURN_SEND_INDICATION); msg.SetTransactionID( rtc::CreateRandomString(kStunTransactionIdLength)); VERIFY(msg.AddAttribute(new StunXorAddressAttribute( STUN_ATTR_XOR_PEER_ADDRESS, ext_addr_))); VERIFY(msg.AddAttribute(new StunByteStringAttribute( STUN_ATTR_DATA, data, size))); VERIFY(msg.Write(&buf)); // If we're sending real data, request a channel bind that we can use later. if (state_ == STATE_UNBOUND && payload) { SendChannelBindRequest(0); state_ = STATE_BINDING; } } else { // If the channel is bound, we can send the data as a Channel Message. buf.WriteUInt16(channel_id_); buf.WriteUInt16(static_cast(size)); buf.WriteBytes(reinterpret_cast(data), size); } return port_->Send(buf.Data(), buf.Length(), options); } void TurnEntry::OnCreatePermissionSuccess() { LOG_J(LS_INFO, port_) << "Create permission for " << ext_addr_.ToSensitiveString() << " succeeded"; // For success result code will be 0. port_->SignalCreatePermissionResult(port_, ext_addr_, 0); } void TurnEntry::OnCreatePermissionError(StunMessage* response, int code) { if (code == STUN_ERROR_STALE_NONCE) { if (port_->UpdateNonce(response)) { SendCreatePermissionRequest(); } } else { // Send signal with error code. port_->SignalCreatePermissionResult(port_, ext_addr_, code); } } void TurnEntry::OnChannelBindSuccess() { LOG_J(LS_INFO, port_) << "Channel bind for " << ext_addr_.ToSensitiveString() << " succeeded"; ASSERT(state_ == STATE_BINDING || state_ == STATE_BOUND); state_ = STATE_BOUND; } void TurnEntry::OnChannelBindError(StunMessage* response, int code) { // TODO(mallinath) - Implement handling of error response for channel // bind request as per http://tools.ietf.org/html/rfc5766#section-11.3 if (code == STUN_ERROR_STALE_NONCE) { if (port_->UpdateNonce(response)) { // Send channel bind request with fresh nonce. SendChannelBindRequest(0); } } } } // namespace cricket