/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/video_engine/overuse_frame_detector.h" #include #include #include #include #include #include "webrtc/base/exp_filter.h" #include "webrtc/system_wrappers/interface/clock.h" #include "webrtc/system_wrappers/interface/critical_section_wrapper.h" #include "webrtc/system_wrappers/interface/logging.h" namespace webrtc { // TODO(mflodman) Test different values for all of these to trigger correctly, // avoid fluctuations etc. namespace { const int64_t kProcessIntervalMs = 5000; // Weight factor to apply to the standard deviation. const float kWeightFactor = 0.997f; // Weight factor to apply to the average. const float kWeightFactorMean = 0.98f; // Delay between consecutive rampups. (Used for quick recovery.) const int kQuickRampUpDelayMs = 10 * 1000; // Delay between rampup attempts. Initially uses standard, scales up to max. const int kStandardRampUpDelayMs = 40 * 1000; const int kMaxRampUpDelayMs = 240 * 1000; // Expontential back-off factor, to prevent annoying up-down behaviour. const double kRampUpBackoffFactor = 2.0; // Max number of overuses detected before always applying the rampup delay. const int kMaxOverusesBeforeApplyRampupDelay = 4; // The maximum exponent to use in VCMExpFilter. const float kSampleDiffMs = 33.0f; const float kMaxExp = 7.0f; } // namespace Statistics::Statistics() : sum_(0.0), count_(0), filtered_samples_(new rtc::ExpFilter(kWeightFactorMean)), filtered_variance_(new rtc::ExpFilter(kWeightFactor)) { Reset(); } void Statistics::SetOptions(const CpuOveruseOptions& options) { options_ = options; } void Statistics::Reset() { sum_ = 0.0; count_ = 0; filtered_variance_->Reset(kWeightFactor); filtered_variance_->Apply(1.0f, InitialVariance()); } void Statistics::AddSample(float sample_ms) { sum_ += sample_ms; ++count_; if (count_ < static_cast(options_.min_frame_samples)) { // Initialize filtered samples. filtered_samples_->Reset(kWeightFactorMean); filtered_samples_->Apply(1.0f, InitialMean()); return; } float exp = sample_ms / kSampleDiffMs; exp = std::min(exp, kMaxExp); filtered_samples_->Apply(exp, sample_ms); filtered_variance_->Apply(exp, (sample_ms - filtered_samples_->filtered()) * (sample_ms - filtered_samples_->filtered())); } float Statistics::InitialMean() const { if (count_ == 0) return 0.0; return sum_ / count_; } float Statistics::InitialVariance() const { // Start in between the underuse and overuse threshold. float average_stddev = (options_.low_capture_jitter_threshold_ms + options_.high_capture_jitter_threshold_ms) / 2.0f; return average_stddev * average_stddev; } float Statistics::Mean() const { return filtered_samples_->filtered(); } float Statistics::StdDev() const { return sqrt(std::max(filtered_variance_->filtered(), 0.0f)); } uint64_t Statistics::Count() const { return count_; } // Class for calculating the average encode time. class OveruseFrameDetector::EncodeTimeAvg { public: EncodeTimeAvg() : kWeightFactor(0.5f), kInitialAvgEncodeTimeMs(5.0f), filtered_encode_time_ms_(new rtc::ExpFilter(kWeightFactor)) { filtered_encode_time_ms_->Apply(1.0f, kInitialAvgEncodeTimeMs); } ~EncodeTimeAvg() {} void AddEncodeSample(float encode_time_ms, int64_t diff_last_sample_ms) { float exp = diff_last_sample_ms / kSampleDiffMs; exp = std::min(exp, kMaxExp); filtered_encode_time_ms_->Apply(exp, encode_time_ms); } int Value() const { return static_cast(filtered_encode_time_ms_->filtered() + 0.5); } private: const float kWeightFactor; const float kInitialAvgEncodeTimeMs; scoped_ptr filtered_encode_time_ms_; }; // Class for calculating the encode usage. class OveruseFrameDetector::EncodeUsage { public: EncodeUsage() : kWeightFactorFrameDiff(0.998f), kWeightFactorEncodeTime(0.995f), kInitialSampleDiffMs(40.0f), kMaxSampleDiffMs(45.0f), count_(0), filtered_encode_time_ms_(new rtc::ExpFilter(kWeightFactorEncodeTime)), filtered_frame_diff_ms_(new rtc::ExpFilter(kWeightFactorFrameDiff)) { Reset(); } ~EncodeUsage() {} void SetOptions(const CpuOveruseOptions& options) { options_ = options; } void Reset() { count_ = 0; filtered_frame_diff_ms_->Reset(kWeightFactorFrameDiff); filtered_frame_diff_ms_->Apply(1.0f, kInitialSampleDiffMs); filtered_encode_time_ms_->Reset(kWeightFactorEncodeTime); filtered_encode_time_ms_->Apply(1.0f, InitialEncodeTimeMs()); } void AddSample(float sample_ms) { float exp = sample_ms / kSampleDiffMs; exp = std::min(exp, kMaxExp); filtered_frame_diff_ms_->Apply(exp, sample_ms); } void AddEncodeSample(float encode_time_ms, int64_t diff_last_sample_ms) { ++count_; float exp = diff_last_sample_ms / kSampleDiffMs; exp = std::min(exp, kMaxExp); filtered_encode_time_ms_->Apply(exp, encode_time_ms); } int Value() const { if (count_ < static_cast(options_.min_frame_samples)) { return static_cast(InitialUsageInPercent() + 0.5f); } float frame_diff_ms = std::max(filtered_frame_diff_ms_->filtered(), 1.0f); frame_diff_ms = std::min(frame_diff_ms, kMaxSampleDiffMs); float encode_usage_percent = 100.0f * filtered_encode_time_ms_->filtered() / frame_diff_ms; return static_cast(encode_usage_percent + 0.5); } private: float InitialUsageInPercent() const { // Start in between the underuse and overuse threshold. return (options_.low_encode_usage_threshold_percent + options_.high_encode_usage_threshold_percent) / 2.0f; } float InitialEncodeTimeMs() const { return InitialUsageInPercent() * kInitialSampleDiffMs / 100; } const float kWeightFactorFrameDiff; const float kWeightFactorEncodeTime; const float kInitialSampleDiffMs; const float kMaxSampleDiffMs; uint64_t count_; CpuOveruseOptions options_; scoped_ptr filtered_encode_time_ms_; scoped_ptr filtered_frame_diff_ms_; }; // Class for calculating the relative standard deviation of encode times. class OveruseFrameDetector::EncodeTimeRsd { public: EncodeTimeRsd(Clock* clock) : kWeightFactor(0.6f), count_(0), filtered_rsd_(new rtc::ExpFilter(kWeightFactor)), hist_samples_(0), hist_sum_(0.0f), last_process_time_ms_(clock->TimeInMilliseconds()) { Reset(); } ~EncodeTimeRsd() {} void SetOptions(const CpuOveruseOptions& options) { options_ = options; } void Reset() { count_ = 0; filtered_rsd_->Reset(kWeightFactor); filtered_rsd_->Apply(1.0f, InitialValue()); hist_.clear(); hist_samples_ = 0; hist_sum_ = 0.0f; } void AddEncodeSample(float encode_time_ms) { int bin = static_cast(encode_time_ms + 0.5f); if (bin <= 0) { // The frame was probably not encoded, skip possible dropped frame. return; } ++count_; ++hist_[bin]; ++hist_samples_; hist_sum_ += bin; } void Process(int64_t now) { if (count_ < static_cast(options_.min_frame_samples)) { // Have not received min number of frames since last reset. return; } const int kMinHistSamples = 20; if (hist_samples_ < kMinHistSamples) { return; } const int64_t kMinDiffSinceLastProcessMs = 1000; int64_t diff_last_process_ms = now - last_process_time_ms_; if (now - last_process_time_ms_ <= kMinDiffSinceLastProcessMs) { return; } last_process_time_ms_ = now; // Calculate variance (using samples above the mean). // Checks for a larger encode time of some frames while there is a small // increase in the average time. int mean = hist_sum_ / hist_samples_; float variance = 0.0f; int total_count = 0; for (std::map::iterator it = hist_.begin(); it != hist_.end(); ++it) { int time = it->first; int count = it->second; if (time > mean) { total_count += count; for (int i = 0; i < count; ++i) { variance += ((time - mean) * (time - mean)); } } } variance /= std::max(total_count, 1); float cov = sqrt(variance) / mean; hist_.clear(); hist_samples_ = 0; hist_sum_ = 0.0f; float exp = static_cast(diff_last_process_ms) / kProcessIntervalMs; exp = std::min(exp, kMaxExp); filtered_rsd_->Apply(exp, 100.0f * cov); } int Value() const { return static_cast(filtered_rsd_->filtered() + 0.5); } private: float InitialValue() const { // Start in between the underuse and overuse threshold. return std::max(((options_.low_encode_time_rsd_threshold + options_.high_encode_time_rsd_threshold) / 2.0f), 0.0f); } const float kWeightFactor; uint32_t count_; // Number of encode samples since last reset. CpuOveruseOptions options_; scoped_ptr filtered_rsd_; int hist_samples_; float hist_sum_; std::map hist_; // Histogram of encode time of frames. int64_t last_process_time_ms_; }; // Class for calculating the capture queue delay change. class OveruseFrameDetector::CaptureQueueDelay { public: CaptureQueueDelay() : kWeightFactor(0.5f), delay_ms_(0), filtered_delay_ms_per_s_(new rtc::ExpFilter(kWeightFactor)) { filtered_delay_ms_per_s_->Apply(1.0f, 0.0f); } ~CaptureQueueDelay() {} void FrameCaptured(int64_t now) { const size_t kMaxSize = 200; if (frames_.size() > kMaxSize) { frames_.pop_front(); } frames_.push_back(now); } void FrameProcessingStarted(int64_t now) { if (frames_.empty()) { return; } delay_ms_ = now - frames_.front(); frames_.pop_front(); } void CalculateDelayChange(int64_t diff_last_sample_ms) { if (diff_last_sample_ms <= 0) { return; } float exp = static_cast(diff_last_sample_ms) / kProcessIntervalMs; exp = std::min(exp, kMaxExp); filtered_delay_ms_per_s_->Apply(exp, delay_ms_ * 1000.0f / diff_last_sample_ms); ClearFrames(); } void ClearFrames() { frames_.clear(); } int delay_ms() const { return delay_ms_; } int Value() const { return static_cast(filtered_delay_ms_per_s_->filtered() + 0.5); } private: const float kWeightFactor; std::list frames_; int delay_ms_; scoped_ptr filtered_delay_ms_per_s_; }; OveruseFrameDetector::OveruseFrameDetector(Clock* clock) : crit_(CriticalSectionWrapper::CreateCriticalSection()), observer_(NULL), clock_(clock), next_process_time_(clock_->TimeInMilliseconds()), num_process_times_(0), last_capture_time_(0), last_overuse_time_(0), checks_above_threshold_(0), num_overuse_detections_(0), last_rampup_time_(0), in_quick_rampup_(false), current_rampup_delay_ms_(kStandardRampUpDelayMs), num_pixels_(0), last_encode_sample_ms_(0), encode_time_(new EncodeTimeAvg()), encode_rsd_(new EncodeTimeRsd(clock)), encode_usage_(new EncodeUsage()), capture_queue_delay_(new CaptureQueueDelay()) { } OveruseFrameDetector::~OveruseFrameDetector() { } void OveruseFrameDetector::SetObserver(CpuOveruseObserver* observer) { CriticalSectionScoped cs(crit_.get()); observer_ = observer; } void OveruseFrameDetector::SetOptions(const CpuOveruseOptions& options) { assert(options.min_frame_samples > 0); CriticalSectionScoped cs(crit_.get()); if (options_.Equals(options)) { return; } options_ = options; capture_deltas_.SetOptions(options); encode_usage_->SetOptions(options); encode_rsd_->SetOptions(options); ResetAll(num_pixels_); } int OveruseFrameDetector::CaptureQueueDelayMsPerS() const { CriticalSectionScoped cs(crit_.get()); return capture_queue_delay_->delay_ms(); } void OveruseFrameDetector::GetCpuOveruseMetrics( CpuOveruseMetrics* metrics) const { CriticalSectionScoped cs(crit_.get()); metrics->capture_jitter_ms = static_cast(capture_deltas_.StdDev() + 0.5); metrics->avg_encode_time_ms = encode_time_->Value(); metrics->encode_rsd = encode_rsd_->Value(); metrics->encode_usage_percent = encode_usage_->Value(); metrics->capture_queue_delay_ms_per_s = capture_queue_delay_->Value(); } int32_t OveruseFrameDetector::TimeUntilNextProcess() { CriticalSectionScoped cs(crit_.get()); return next_process_time_ - clock_->TimeInMilliseconds(); } bool OveruseFrameDetector::FrameSizeChanged(int num_pixels) const { if (num_pixels != num_pixels_) { return true; } return false; } bool OveruseFrameDetector::FrameTimeoutDetected(int64_t now) const { if (last_capture_time_ == 0) { return false; } return (now - last_capture_time_) > options_.frame_timeout_interval_ms; } void OveruseFrameDetector::ResetAll(int num_pixels) { num_pixels_ = num_pixels; capture_deltas_.Reset(); encode_usage_->Reset(); encode_rsd_->Reset(); capture_queue_delay_->ClearFrames(); last_capture_time_ = 0; num_process_times_ = 0; } void OveruseFrameDetector::FrameCaptured(int width, int height) { CriticalSectionScoped cs(crit_.get()); int64_t now = clock_->TimeInMilliseconds(); if (FrameSizeChanged(width * height) || FrameTimeoutDetected(now)) { ResetAll(width * height); } if (last_capture_time_ != 0) { capture_deltas_.AddSample(now - last_capture_time_); encode_usage_->AddSample(now - last_capture_time_); } last_capture_time_ = now; capture_queue_delay_->FrameCaptured(now); } void OveruseFrameDetector::FrameProcessingStarted() { CriticalSectionScoped cs(crit_.get()); capture_queue_delay_->FrameProcessingStarted(clock_->TimeInMilliseconds()); } void OveruseFrameDetector::FrameEncoded(int encode_time_ms) { CriticalSectionScoped cs(crit_.get()); int64_t time = clock_->TimeInMilliseconds(); if (last_encode_sample_ms_ != 0) { int64_t diff_ms = time - last_encode_sample_ms_; encode_time_->AddEncodeSample(encode_time_ms, diff_ms); encode_usage_->AddEncodeSample(encode_time_ms, diff_ms); encode_rsd_->AddEncodeSample(encode_time_ms); } last_encode_sample_ms_ = time; } int32_t OveruseFrameDetector::Process() { CriticalSectionScoped cs(crit_.get()); int64_t now = clock_->TimeInMilliseconds(); // Used to protect against Process() being called too often. if (now < next_process_time_) return 0; int64_t diff_ms = now - next_process_time_ + kProcessIntervalMs; next_process_time_ = now + kProcessIntervalMs; ++num_process_times_; encode_rsd_->Process(now); capture_queue_delay_->CalculateDelayChange(diff_ms); if (num_process_times_ <= options_.min_process_count) { return 0; } if (IsOverusing()) { // If the last thing we did was going up, and now have to back down, we need // to check if this peak was short. If so we should back off to avoid going // back and forth between this load, the system doesn't seem to handle it. bool check_for_backoff = last_rampup_time_ > last_overuse_time_; if (check_for_backoff) { if (now - last_rampup_time_ < kStandardRampUpDelayMs || num_overuse_detections_ > kMaxOverusesBeforeApplyRampupDelay) { // Going up was not ok for very long, back off. current_rampup_delay_ms_ *= kRampUpBackoffFactor; if (current_rampup_delay_ms_ > kMaxRampUpDelayMs) current_rampup_delay_ms_ = kMaxRampUpDelayMs; } else { // Not currently backing off, reset rampup delay. current_rampup_delay_ms_ = kStandardRampUpDelayMs; } } last_overuse_time_ = now; in_quick_rampup_ = false; checks_above_threshold_ = 0; ++num_overuse_detections_; if (observer_ != NULL) observer_->OveruseDetected(); } else if (IsUnderusing(now)) { last_rampup_time_ = now; in_quick_rampup_ = true; if (observer_ != NULL) observer_->NormalUsage(); } int rampup_delay = in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_; LOG(LS_VERBOSE) << " Frame stats: capture avg: " << capture_deltas_.Mean() << " capture stddev " << capture_deltas_.StdDev() << " encode usage " << encode_usage_->Value() << " encode rsd " << encode_rsd_->Value() << " overuse detections " << num_overuse_detections_ << " rampup delay " << rampup_delay; return 0; } bool OveruseFrameDetector::IsOverusing() { bool overusing = false; if (options_.enable_capture_jitter_method) { overusing = capture_deltas_.StdDev() >= options_.high_capture_jitter_threshold_ms; } else if (options_.enable_encode_usage_method) { bool encode_usage_overuse = encode_usage_->Value() >= options_.high_encode_usage_threshold_percent; bool encode_rsd_overuse = false; if (options_.high_encode_time_rsd_threshold > 0) { encode_rsd_overuse = (encode_rsd_->Value() >= options_.high_encode_time_rsd_threshold); } overusing = encode_usage_overuse || encode_rsd_overuse; } if (overusing) { ++checks_above_threshold_; } else { checks_above_threshold_ = 0; } return checks_above_threshold_ >= options_.high_threshold_consecutive_count; } bool OveruseFrameDetector::IsUnderusing(int64_t time_now) { int delay = in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_; if (time_now < last_rampup_time_ + delay) return false; bool underusing = false; if (options_.enable_capture_jitter_method) { underusing = capture_deltas_.StdDev() < options_.low_capture_jitter_threshold_ms; } else if (options_.enable_encode_usage_method) { bool encode_usage_underuse = encode_usage_->Value() < options_.low_encode_usage_threshold_percent; bool encode_rsd_underuse = true; if (options_.low_encode_time_rsd_threshold > 0) { encode_rsd_underuse = (encode_rsd_->Value() < options_.low_encode_time_rsd_threshold); } underusing = encode_usage_underuse && encode_rsd_underuse; } return underusing; } } // namespace webrtc