/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/base/format_macros.h" #include "webrtc/common_audio/resampler/include/push_resampler.h" #include "webrtc/modules/interface/module_common_types.h" #include "webrtc/voice_engine/utility.h" #include "webrtc/voice_engine/voice_engine_defines.h" namespace webrtc { namespace voe { namespace { class UtilityTest : public ::testing::Test { protected: UtilityTest() { src_frame_.sample_rate_hz_ = 16000; src_frame_.samples_per_channel_ = src_frame_.sample_rate_hz_ / 100; src_frame_.num_channels_ = 1; dst_frame_.CopyFrom(src_frame_); golden_frame_.CopyFrom(src_frame_); } void RunResampleTest(int src_channels, int src_sample_rate_hz, int dst_channels, int dst_sample_rate_hz); PushResampler resampler_; AudioFrame src_frame_; AudioFrame dst_frame_; AudioFrame golden_frame_; }; // Sets the signal value to increase by |data| with every sample. Floats are // used so non-integer values result in rounding error, but not an accumulating // error. void SetMonoFrame(AudioFrame* frame, float data, int sample_rate_hz) { memset(frame->data_, 0, sizeof(frame->data_)); frame->num_channels_ = 1; frame->sample_rate_hz_ = sample_rate_hz; frame->samples_per_channel_ = sample_rate_hz / 100; for (size_t i = 0; i < frame->samples_per_channel_; i++) { frame->data_[i] = static_cast(data * i); } } // Keep the existing sample rate. void SetMonoFrame(AudioFrame* frame, float data) { SetMonoFrame(frame, data, frame->sample_rate_hz_); } // Sets the signal value to increase by |left| and |right| with every sample in // each channel respectively. void SetStereoFrame(AudioFrame* frame, float left, float right, int sample_rate_hz) { memset(frame->data_, 0, sizeof(frame->data_)); frame->num_channels_ = 2; frame->sample_rate_hz_ = sample_rate_hz; frame->samples_per_channel_ = sample_rate_hz / 100; for (size_t i = 0; i < frame->samples_per_channel_; i++) { frame->data_[i * 2] = static_cast(left * i); frame->data_[i * 2 + 1] = static_cast(right * i); } } // Keep the existing sample rate. void SetStereoFrame(AudioFrame* frame, float left, float right) { SetStereoFrame(frame, left, right, frame->sample_rate_hz_); } void VerifyParams(const AudioFrame& ref_frame, const AudioFrame& test_frame) { EXPECT_EQ(ref_frame.num_channels_, test_frame.num_channels_); EXPECT_EQ(ref_frame.samples_per_channel_, test_frame.samples_per_channel_); EXPECT_EQ(ref_frame.sample_rate_hz_, test_frame.sample_rate_hz_); } // Computes the best SNR based on the error between |ref_frame| and // |test_frame|. It allows for up to a |max_delay| in samples between the // signals to compensate for the resampling delay. float ComputeSNR(const AudioFrame& ref_frame, const AudioFrame& test_frame, size_t max_delay) { VerifyParams(ref_frame, test_frame); float best_snr = 0; size_t best_delay = 0; for (size_t delay = 0; delay <= max_delay; delay++) { float mse = 0; float variance = 0; for (size_t i = 0; i < ref_frame.samples_per_channel_ * ref_frame.num_channels_ - delay; i++) { int error = ref_frame.data_[i] - test_frame.data_[i + delay]; mse += error * error; variance += ref_frame.data_[i] * ref_frame.data_[i]; } float snr = 100; // We assign 100 dB to the zero-error case. if (mse > 0) snr = 10 * log10(variance / mse); if (snr > best_snr) { best_snr = snr; best_delay = delay; } } printf("SNR=%.1f dB at delay=%" PRIuS "\n", best_snr, best_delay); return best_snr; } void VerifyFramesAreEqual(const AudioFrame& ref_frame, const AudioFrame& test_frame) { VerifyParams(ref_frame, test_frame); for (size_t i = 0; i < ref_frame.samples_per_channel_ * ref_frame.num_channels_; i++) { EXPECT_EQ(ref_frame.data_[i], test_frame.data_[i]); } } void UtilityTest::RunResampleTest(int src_channels, int src_sample_rate_hz, int dst_channels, int dst_sample_rate_hz) { PushResampler resampler; // Create a new one with every test. const int16_t kSrcLeft = 30; // Shouldn't overflow for any used sample rate. const int16_t kSrcRight = 15; const float resampling_factor = (1.0 * src_sample_rate_hz) / dst_sample_rate_hz; const float dst_left = resampling_factor * kSrcLeft; const float dst_right = resampling_factor * kSrcRight; const float dst_mono = (dst_left + dst_right) / 2; if (src_channels == 1) SetMonoFrame(&src_frame_, kSrcLeft, src_sample_rate_hz); else SetStereoFrame(&src_frame_, kSrcLeft, kSrcRight, src_sample_rate_hz); if (dst_channels == 1) { SetMonoFrame(&dst_frame_, 0, dst_sample_rate_hz); if (src_channels == 1) SetMonoFrame(&golden_frame_, dst_left, dst_sample_rate_hz); else SetMonoFrame(&golden_frame_, dst_mono, dst_sample_rate_hz); } else { SetStereoFrame(&dst_frame_, 0, 0, dst_sample_rate_hz); if (src_channels == 1) SetStereoFrame(&golden_frame_, dst_left, dst_left, dst_sample_rate_hz); else SetStereoFrame(&golden_frame_, dst_left, dst_right, dst_sample_rate_hz); } // The sinc resampler has a known delay, which we compute here. Multiplying by // two gives us a crude maximum for any resampling, as the old resampler // typically (but not always) has lower delay. static const size_t kInputKernelDelaySamples = 16; const size_t max_delay = static_cast( static_cast(dst_sample_rate_hz) / src_sample_rate_hz * kInputKernelDelaySamples * dst_channels * 2); printf("(%d, %d Hz) -> (%d, %d Hz) ", // SNR reported on the same line later. src_channels, src_sample_rate_hz, dst_channels, dst_sample_rate_hz); RemixAndResample(src_frame_, &resampler, &dst_frame_); if (src_sample_rate_hz == 96000 && dst_sample_rate_hz == 8000) { // The sinc resampler gives poor SNR at this extreme conversion, but we // expect to see this rarely in practice. EXPECT_GT(ComputeSNR(golden_frame_, dst_frame_, max_delay), 14.0f); } else { EXPECT_GT(ComputeSNR(golden_frame_, dst_frame_, max_delay), 46.0f); } } TEST_F(UtilityTest, RemixAndResampleCopyFrameSucceeds) { // Stereo -> stereo. SetStereoFrame(&src_frame_, 10, 10); SetStereoFrame(&dst_frame_, 0, 0); RemixAndResample(src_frame_, &resampler_, &dst_frame_); VerifyFramesAreEqual(src_frame_, dst_frame_); // Mono -> mono. SetMonoFrame(&src_frame_, 20); SetMonoFrame(&dst_frame_, 0); RemixAndResample(src_frame_, &resampler_, &dst_frame_); VerifyFramesAreEqual(src_frame_, dst_frame_); } TEST_F(UtilityTest, RemixAndResampleMixingOnlySucceeds) { // Stereo -> mono. SetStereoFrame(&dst_frame_, 0, 0); SetMonoFrame(&src_frame_, 10); SetStereoFrame(&golden_frame_, 10, 10); RemixAndResample(src_frame_, &resampler_, &dst_frame_); VerifyFramesAreEqual(dst_frame_, golden_frame_); // Mono -> stereo. SetMonoFrame(&dst_frame_, 0); SetStereoFrame(&src_frame_, 10, 20); SetMonoFrame(&golden_frame_, 15); RemixAndResample(src_frame_, &resampler_, &dst_frame_); VerifyFramesAreEqual(golden_frame_, dst_frame_); } TEST_F(UtilityTest, RemixAndResampleSucceeds) { const int kSampleRates[] = {8000, 16000, 32000, 44100, 48000, 96000}; const int kSampleRatesSize = sizeof(kSampleRates) / sizeof(*kSampleRates); const int kChannels[] = {1, 2}; const int kChannelsSize = sizeof(kChannels) / sizeof(*kChannels); for (int src_rate = 0; src_rate < kSampleRatesSize; src_rate++) { for (int dst_rate = 0; dst_rate < kSampleRatesSize; dst_rate++) { for (int src_channel = 0; src_channel < kChannelsSize; src_channel++) { for (int dst_channel = 0; dst_channel < kChannelsSize; dst_channel++) { RunResampleTest(kChannels[src_channel], kSampleRates[src_rate], kChannels[dst_channel], kSampleRates[dst_rate]); } } } } } } // namespace } // namespace voe } // namespace webrtc