aboutsummaryrefslogtreecommitdiff
path: root/audio/voip/test/audio_channel_unittest.cc
blob: a4f518c5bde8668e6486749386e44e7c112a1e51 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
/*
 *  Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "audio/voip/audio_channel.h"
#include "api/audio_codecs/builtin_audio_decoder_factory.h"
#include "api/audio_codecs/builtin_audio_encoder_factory.h"
#include "api/call/transport.h"
#include "api/task_queue/task_queue_factory.h"
#include "audio/voip/test/mock_task_queue.h"
#include "modules/audio_mixer/audio_mixer_impl.h"
#include "modules/audio_mixer/sine_wave_generator.h"
#include "modules/rtp_rtcp/source/rtp_packet_received.h"
#include "rtc_base/logging.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/mock_transport.h"

namespace webrtc {
namespace {

using ::testing::Invoke;
using ::testing::NiceMock;
using ::testing::Return;
using ::testing::Unused;

constexpr uint64_t kStartTime = 123456789;
constexpr uint32_t kLocalSsrc = 0xdeadc0de;
constexpr int16_t kAudioLevel = 3004;  // used for sine wave level
constexpr int kPcmuPayload = 0;

class AudioChannelTest : public ::testing::Test {
 public:
  const SdpAudioFormat kPcmuFormat = {"pcmu", 8000, 1};

  AudioChannelTest()
      : fake_clock_(kStartTime), wave_generator_(1000.0, kAudioLevel) {
    task_queue_factory_ = std::make_unique<MockTaskQueueFactory>(&task_queue_);
    audio_mixer_ = AudioMixerImpl::Create();
    encoder_factory_ = CreateBuiltinAudioEncoderFactory();
    decoder_factory_ = CreateBuiltinAudioDecoderFactory();

    // By default, run the queued task immediately.
    ON_CALL(task_queue_, PostTask)
        .WillByDefault(
            Invoke([&](std::unique_ptr<QueuedTask> task) { task->Run(); }));
  }

  void SetUp() override { audio_channel_ = CreateAudioChannel(kLocalSsrc); }

  void TearDown() override { audio_channel_ = nullptr; }

  rtc::scoped_refptr<AudioChannel> CreateAudioChannel(uint32_t ssrc) {
    // Use same audio mixer here for simplicity sake as we are not checking
    // audio activity of RTP in our testcases. If we need to do test on audio
    // signal activity then we need to assign audio mixer for each channel.
    // Also this uses the same transport object for different audio channel to
    // simplify network routing logic.
    rtc::scoped_refptr<AudioChannel> audio_channel =
        rtc::make_ref_counted<AudioChannel>(
            &transport_, ssrc, task_queue_factory_.get(), audio_mixer_.get(),
            decoder_factory_);
    audio_channel->SetEncoder(kPcmuPayload, kPcmuFormat,
                              encoder_factory_->MakeAudioEncoder(
                                  kPcmuPayload, kPcmuFormat, absl::nullopt));
    audio_channel->SetReceiveCodecs({{kPcmuPayload, kPcmuFormat}});
    audio_channel->StartSend();
    audio_channel->StartPlay();
    return audio_channel;
  }

  std::unique_ptr<AudioFrame> GetAudioFrame(int order) {
    auto frame = std::make_unique<AudioFrame>();
    frame->sample_rate_hz_ = kPcmuFormat.clockrate_hz;
    frame->samples_per_channel_ = kPcmuFormat.clockrate_hz / 100;  // 10 ms.
    frame->num_channels_ = kPcmuFormat.num_channels;
    frame->timestamp_ = frame->samples_per_channel_ * order;
    wave_generator_.GenerateNextFrame(frame.get());
    return frame;
  }

  SimulatedClock fake_clock_;
  SineWaveGenerator wave_generator_;
  NiceMock<MockTransport> transport_;
  NiceMock<MockTaskQueue> task_queue_;
  std::unique_ptr<TaskQueueFactory> task_queue_factory_;
  rtc::scoped_refptr<AudioMixer> audio_mixer_;
  rtc::scoped_refptr<AudioDecoderFactory> decoder_factory_;
  rtc::scoped_refptr<AudioEncoderFactory> encoder_factory_;
  rtc::scoped_refptr<AudioChannel> audio_channel_;
};

// Validate RTP packet generation by feeding audio frames with sine wave.
// Resulted RTP packet is looped back into AudioChannel and gets decoded into
// audio frame to see if it has some signal to indicate its validity.
TEST_F(AudioChannelTest, PlayRtpByLocalLoop) {
  auto loop_rtp = [&](const uint8_t* packet, size_t length, Unused) {
    audio_channel_->ReceivedRTPPacket(
        rtc::ArrayView<const uint8_t>(packet, length));
    return true;
  };
  EXPECT_CALL(transport_, SendRtp).WillOnce(Invoke(loop_rtp));

  auto audio_sender = audio_channel_->GetAudioSender();
  audio_sender->SendAudioData(GetAudioFrame(0));
  audio_sender->SendAudioData(GetAudioFrame(1));

  AudioFrame empty_frame, audio_frame;
  empty_frame.Mute();
  empty_frame.mutable_data();  // This will zero out the data.
  audio_frame.CopyFrom(empty_frame);
  audio_mixer_->Mix(/*number_of_channels*/ 1, &audio_frame);

  // We expect now audio frame to pick up something.
  EXPECT_NE(memcmp(empty_frame.data(), audio_frame.data(),
                   AudioFrame::kMaxDataSizeBytes),
            0);
}

// Validate assigned local SSRC is resulted in RTP packet.
TEST_F(AudioChannelTest, VerifyLocalSsrcAsAssigned) {
  RtpPacketReceived rtp;
  auto loop_rtp = [&](const uint8_t* packet, size_t length, Unused) {
    rtp.Parse(packet, length);
    return true;
  };
  EXPECT_CALL(transport_, SendRtp).WillOnce(Invoke(loop_rtp));

  auto audio_sender = audio_channel_->GetAudioSender();
  audio_sender->SendAudioData(GetAudioFrame(0));
  audio_sender->SendAudioData(GetAudioFrame(1));

  EXPECT_EQ(rtp.Ssrc(), kLocalSsrc);
}

// Check metrics after processing an RTP packet.
TEST_F(AudioChannelTest, TestIngressStatistics) {
  auto loop_rtp = [&](const uint8_t* packet, size_t length, Unused) {
    audio_channel_->ReceivedRTPPacket(
        rtc::ArrayView<const uint8_t>(packet, length));
    return true;
  };
  EXPECT_CALL(transport_, SendRtp).WillRepeatedly(Invoke(loop_rtp));

  auto audio_sender = audio_channel_->GetAudioSender();
  audio_sender->SendAudioData(GetAudioFrame(0));
  audio_sender->SendAudioData(GetAudioFrame(1));

  AudioFrame audio_frame;
  audio_mixer_->Mix(/*number_of_channels=*/1, &audio_frame);
  audio_mixer_->Mix(/*number_of_channels=*/1, &audio_frame);

  absl::optional<IngressStatistics> ingress_stats =
      audio_channel_->GetIngressStatistics();
  EXPECT_TRUE(ingress_stats);
  EXPECT_EQ(ingress_stats->neteq_stats.total_samples_received, 160ULL);
  EXPECT_EQ(ingress_stats->neteq_stats.concealed_samples, 0ULL);
  EXPECT_EQ(ingress_stats->neteq_stats.concealment_events, 0ULL);
  EXPECT_EQ(ingress_stats->neteq_stats.inserted_samples_for_deceleration, 0ULL);
  EXPECT_EQ(ingress_stats->neteq_stats.removed_samples_for_acceleration, 0ULL);
  EXPECT_EQ(ingress_stats->neteq_stats.silent_concealed_samples, 0ULL);
  // To extract the jitter buffer length in millisecond, jitter_buffer_delay_ms
  // needs to be divided by jitter_buffer_emitted_count (number of samples).
  EXPECT_EQ(ingress_stats->neteq_stats.jitter_buffer_delay_ms, 1600ULL);
  EXPECT_EQ(ingress_stats->neteq_stats.jitter_buffer_emitted_count, 160ULL);
  EXPECT_GT(ingress_stats->neteq_stats.jitter_buffer_target_delay_ms, 0ULL);
  EXPECT_EQ(ingress_stats->neteq_stats.interruption_count, 0);
  EXPECT_EQ(ingress_stats->neteq_stats.total_interruption_duration_ms, 0);
  EXPECT_DOUBLE_EQ(ingress_stats->total_duration, 0.02);

  // Now without any RTP pending in jitter buffer pull more.
  audio_mixer_->Mix(/*number_of_channels=*/1, &audio_frame);
  audio_mixer_->Mix(/*number_of_channels=*/1, &audio_frame);

  // Send another RTP packet to intentionally break PLC.
  audio_sender->SendAudioData(GetAudioFrame(2));
  audio_sender->SendAudioData(GetAudioFrame(3));

  ingress_stats = audio_channel_->GetIngressStatistics();
  EXPECT_TRUE(ingress_stats);
  EXPECT_EQ(ingress_stats->neteq_stats.total_samples_received, 320ULL);
  EXPECT_EQ(ingress_stats->neteq_stats.concealed_samples, 168ULL);
  EXPECT_EQ(ingress_stats->neteq_stats.concealment_events, 1ULL);
  EXPECT_EQ(ingress_stats->neteq_stats.inserted_samples_for_deceleration, 0ULL);
  EXPECT_EQ(ingress_stats->neteq_stats.removed_samples_for_acceleration, 0ULL);
  EXPECT_EQ(ingress_stats->neteq_stats.silent_concealed_samples, 0ULL);
  EXPECT_EQ(ingress_stats->neteq_stats.jitter_buffer_delay_ms, 1600ULL);
  EXPECT_EQ(ingress_stats->neteq_stats.jitter_buffer_emitted_count, 160ULL);
  EXPECT_GT(ingress_stats->neteq_stats.jitter_buffer_target_delay_ms, 0ULL);
  EXPECT_EQ(ingress_stats->neteq_stats.interruption_count, 0);
  EXPECT_EQ(ingress_stats->neteq_stats.total_interruption_duration_ms, 0);
  EXPECT_DOUBLE_EQ(ingress_stats->total_duration, 0.04);

  // Pull the last RTP packet.
  audio_mixer_->Mix(/*number_of_channels=*/1, &audio_frame);
  audio_mixer_->Mix(/*number_of_channels=*/1, &audio_frame);

  ingress_stats = audio_channel_->GetIngressStatistics();
  EXPECT_TRUE(ingress_stats);
  EXPECT_EQ(ingress_stats->neteq_stats.total_samples_received, 480ULL);
  EXPECT_EQ(ingress_stats->neteq_stats.concealed_samples, 168ULL);
  EXPECT_EQ(ingress_stats->neteq_stats.concealment_events, 1ULL);
  EXPECT_EQ(ingress_stats->neteq_stats.inserted_samples_for_deceleration, 0ULL);
  EXPECT_EQ(ingress_stats->neteq_stats.removed_samples_for_acceleration, 0ULL);
  EXPECT_EQ(ingress_stats->neteq_stats.silent_concealed_samples, 0ULL);
  EXPECT_EQ(ingress_stats->neteq_stats.jitter_buffer_delay_ms, 3200ULL);
  EXPECT_EQ(ingress_stats->neteq_stats.jitter_buffer_emitted_count, 320ULL);
  EXPECT_GT(ingress_stats->neteq_stats.jitter_buffer_target_delay_ms, 0ULL);
  EXPECT_EQ(ingress_stats->neteq_stats.interruption_count, 0);
  EXPECT_EQ(ingress_stats->neteq_stats.total_interruption_duration_ms, 0);
  EXPECT_DOUBLE_EQ(ingress_stats->total_duration, 0.06);
}

// Check ChannelStatistics metric after processing RTP and RTCP packets.
TEST_F(AudioChannelTest, TestChannelStatistics) {
  auto loop_rtp = [&](const uint8_t* packet, size_t length, Unused) {
    audio_channel_->ReceivedRTPPacket(
        rtc::ArrayView<const uint8_t>(packet, length));
    return true;
  };
  auto loop_rtcp = [&](const uint8_t* packet, size_t length) {
    audio_channel_->ReceivedRTCPPacket(
        rtc::ArrayView<const uint8_t>(packet, length));
    return true;
  };
  EXPECT_CALL(transport_, SendRtp).WillRepeatedly(Invoke(loop_rtp));
  EXPECT_CALL(transport_, SendRtcp).WillRepeatedly(Invoke(loop_rtcp));

  // Simulate microphone giving audio frame (10 ms). This will trigger tranport
  // to send RTP as handled in loop_rtp above.
  auto audio_sender = audio_channel_->GetAudioSender();
  audio_sender->SendAudioData(GetAudioFrame(0));
  audio_sender->SendAudioData(GetAudioFrame(1));

  // Simulate speaker requesting audio frame (10 ms). This will trigger VoIP
  // engine to fetch audio samples from RTP packets stored in jitter buffer.
  AudioFrame audio_frame;
  audio_mixer_->Mix(/*number_of_channels=*/1, &audio_frame);
  audio_mixer_->Mix(/*number_of_channels=*/1, &audio_frame);

  // Force sending RTCP SR report in order to have remote_rtcp field available
  // in channel statistics. This will trigger tranport to send RTCP as handled
  // in loop_rtcp above.
  audio_channel_->SendRTCPReportForTesting(kRtcpSr);

  absl::optional<ChannelStatistics> channel_stats =
      audio_channel_->GetChannelStatistics();
  EXPECT_TRUE(channel_stats);

  EXPECT_EQ(channel_stats->packets_sent, 1ULL);
  EXPECT_EQ(channel_stats->bytes_sent, 160ULL);

  EXPECT_EQ(channel_stats->packets_received, 1ULL);
  EXPECT_EQ(channel_stats->bytes_received, 160ULL);
  EXPECT_EQ(channel_stats->jitter, 0);
  EXPECT_EQ(channel_stats->packets_lost, 0);
  EXPECT_EQ(channel_stats->remote_ssrc.value(), kLocalSsrc);

  EXPECT_TRUE(channel_stats->remote_rtcp.has_value());

  EXPECT_EQ(channel_stats->remote_rtcp->jitter, 0);
  EXPECT_EQ(channel_stats->remote_rtcp->packets_lost, 0);
  EXPECT_EQ(channel_stats->remote_rtcp->fraction_lost, 0);
  EXPECT_GT(channel_stats->remote_rtcp->last_report_received_timestamp_ms, 0);
  EXPECT_FALSE(channel_stats->remote_rtcp->round_trip_time.has_value());
}

// Check ChannelStatistics RTT metric after processing RTP and RTCP packets
// using three audio channels where each represents media endpoint.
//
//  1) AC1 <- RTP/RTCP -> AC2
//  2) AC1 <- RTP/RTCP -> AC3
//
// During step 1), AC1 should be able to check RTT from AC2's SSRC.
// During step 2), AC1 should be able to check RTT from AC3's SSRC.
TEST_F(AudioChannelTest, RttIsAvailableAfterChangeOfRemoteSsrc) {
  // Create AC2 and AC3.
  constexpr uint32_t kAc2Ssrc = 0xdeadbeef;
  constexpr uint32_t kAc3Ssrc = 0xdeafbeef;

  auto ac_2 = CreateAudioChannel(kAc2Ssrc);
  auto ac_3 = CreateAudioChannel(kAc3Ssrc);

  auto send_recv_rtp = [&](rtc::scoped_refptr<AudioChannel> rtp_sender,
                           rtc::scoped_refptr<AudioChannel> rtp_receiver) {
    // Setup routing logic via transport_.
    auto route_rtp = [&](const uint8_t* packet, size_t length, Unused) {
      rtp_receiver->ReceivedRTPPacket(rtc::MakeArrayView(packet, length));
      return true;
    };
    ON_CALL(transport_, SendRtp).WillByDefault(route_rtp);

    // This will trigger route_rtp callback via transport_.
    rtp_sender->GetAudioSender()->SendAudioData(GetAudioFrame(0));
    rtp_sender->GetAudioSender()->SendAudioData(GetAudioFrame(1));

    // Process received RTP in receiver.
    AudioFrame audio_frame;
    audio_mixer_->Mix(/*number_of_channels=*/1, &audio_frame);
    audio_mixer_->Mix(/*number_of_channels=*/1, &audio_frame);

    // Revert to default to avoid using reference in route_rtp lambda.
    ON_CALL(transport_, SendRtp).WillByDefault(Return(true));
  };

  auto send_recv_rtcp = [&](rtc::scoped_refptr<AudioChannel> rtcp_sender,
                            rtc::scoped_refptr<AudioChannel> rtcp_receiver) {
    // Setup routing logic via transport_.
    auto route_rtcp = [&](const uint8_t* packet, size_t length) {
      rtcp_receiver->ReceivedRTCPPacket(rtc::MakeArrayView(packet, length));
      return true;
    };
    ON_CALL(transport_, SendRtcp).WillByDefault(route_rtcp);

    // This will trigger route_rtcp callback via transport_.
    rtcp_sender->SendRTCPReportForTesting(kRtcpSr);

    // Revert to default to avoid using reference in route_rtcp lambda.
    ON_CALL(transport_, SendRtcp).WillByDefault(Return(true));
  };

  // AC1 <-- RTP/RTCP --> AC2
  send_recv_rtp(audio_channel_, ac_2);
  send_recv_rtp(ac_2, audio_channel_);
  send_recv_rtcp(audio_channel_, ac_2);
  send_recv_rtcp(ac_2, audio_channel_);

  absl::optional<ChannelStatistics> channel_stats =
      audio_channel_->GetChannelStatistics();
  ASSERT_TRUE(channel_stats);
  EXPECT_EQ(channel_stats->remote_ssrc, kAc2Ssrc);
  ASSERT_TRUE(channel_stats->remote_rtcp);
  EXPECT_GT(channel_stats->remote_rtcp->round_trip_time, 0.0);

  // AC1 <-- RTP/RTCP --> AC3
  send_recv_rtp(audio_channel_, ac_3);
  send_recv_rtp(ac_3, audio_channel_);
  send_recv_rtcp(audio_channel_, ac_3);
  send_recv_rtcp(ac_3, audio_channel_);

  channel_stats = audio_channel_->GetChannelStatistics();
  ASSERT_TRUE(channel_stats);
  EXPECT_EQ(channel_stats->remote_ssrc, kAc3Ssrc);
  ASSERT_TRUE(channel_stats->remote_rtcp);
  EXPECT_GT(channel_stats->remote_rtcp->round_trip_time, 0.0);
}

}  // namespace
}  // namespace webrtc