aboutsummaryrefslogtreecommitdiff
path: root/call/simulated_network.cc
blob: b298fdb4e2e727c029d992427aae713c23db0a7c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
/*
 *  Copyright 2018 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "call/simulated_network.h"

#include <algorithm>
#include <cmath>
#include <utility>

#include "api/units/data_rate.h"
#include "api/units/data_size.h"
#include "api/units/time_delta.h"
#include "rtc_base/checks.h"

namespace webrtc {
namespace {
constexpr TimeDelta kDefaultProcessDelay = TimeDelta::Millis(5);
}  // namespace

CoDelSimulation::CoDelSimulation() = default;
CoDelSimulation::~CoDelSimulation() = default;

bool CoDelSimulation::DropDequeuedPacket(Timestamp now,
                                         Timestamp enqueing_time,
                                         DataSize packet_size,
                                         DataSize queue_size) {
  constexpr TimeDelta kWindow = TimeDelta::Millis(100);
  constexpr TimeDelta kDelayThreshold = TimeDelta::Millis(5);
  constexpr TimeDelta kDropCountMemory = TimeDelta::Millis(1600);
  constexpr DataSize kMaxPacketSize = DataSize::Bytes(1500);

  // Compensates for process interval in simulation; not part of standard CoDel.
  TimeDelta queuing_time = now - enqueing_time - kDefaultProcessDelay;

  if (queue_size < kMaxPacketSize || queuing_time < kDelayThreshold) {
    enter_drop_state_at_ = Timestamp::PlusInfinity();
    state_ = kNormal;
    return false;
  }
  switch (state_) {
    case kNormal:
      enter_drop_state_at_ = now + kWindow;
      state_ = kPending;
      return false;

    case kPending:
      if (now >= enter_drop_state_at_) {
        state_ = kDropping;
        // Starting the drop counter with the drops made during the most recent
        // drop state period.
        drop_count_ = drop_count_ - previous_drop_count_;
        if (now >= last_drop_at_ + kDropCountMemory)
          drop_count_ = 0;
        previous_drop_count_ = drop_count_;
        last_drop_at_ = now;
        ++drop_count_;
        return true;
      }
      return false;

    case kDropping:
      TimeDelta drop_delay = kWindow / sqrt(static_cast<double>(drop_count_));
      Timestamp next_drop_at = last_drop_at_ + drop_delay;
      if (now >= next_drop_at) {
        if (queue_size - packet_size < kMaxPacketSize)
          state_ = kPending;
        last_drop_at_ = next_drop_at;
        ++drop_count_;
        return true;
      }
      return false;
  }
}

SimulatedNetwork::SimulatedNetwork(Config config, uint64_t random_seed)
    : random_(random_seed), bursting_(false) {
  SetConfig(config);
}

SimulatedNetwork::~SimulatedNetwork() = default;

void SimulatedNetwork::SetConfig(const Config& config) {
  rtc::CritScope crit(&config_lock_);
  config_state_.config = config;  // Shallow copy of the struct.
  double prob_loss = config.loss_percent / 100.0;
  if (config_state_.config.avg_burst_loss_length == -1) {
    // Uniform loss
    config_state_.prob_loss_bursting = prob_loss;
    config_state_.prob_start_bursting = prob_loss;
  } else {
    // Lose packets according to a gilbert-elliot model.
    int avg_burst_loss_length = config.avg_burst_loss_length;
    int min_avg_burst_loss_length = std::ceil(prob_loss / (1 - prob_loss));

    RTC_CHECK_GT(avg_burst_loss_length, min_avg_burst_loss_length)
        << "For a total packet loss of " << config.loss_percent
        << "%% then"
           " avg_burst_loss_length must be "
        << min_avg_burst_loss_length + 1 << " or higher.";

    config_state_.prob_loss_bursting = (1.0 - 1.0 / avg_burst_loss_length);
    config_state_.prob_start_bursting =
        prob_loss / (1 - prob_loss) / avg_burst_loss_length;
  }
}

void SimulatedNetwork::UpdateConfig(
    std::function<void(BuiltInNetworkBehaviorConfig*)> config_modifier) {
  rtc::CritScope crit(&config_lock_);
  config_modifier(&config_state_.config);
}

void SimulatedNetwork::PauseTransmissionUntil(int64_t until_us) {
  rtc::CritScope crit(&config_lock_);
  config_state_.pause_transmission_until_us = until_us;
}

bool SimulatedNetwork::EnqueuePacket(PacketInFlightInfo packet) {
  RTC_DCHECK_RUNS_SERIALIZED(&process_checker_);
  ConfigState state = GetConfigState();

  UpdateCapacityQueue(state, packet.send_time_us);

  packet.size += state.config.packet_overhead;

  if (state.config.queue_length_packets > 0 &&
      capacity_link_.size() >= state.config.queue_length_packets) {
    // Too many packet on the link, drop this one.
    return false;
  }

  // Set arrival time = send time for now; actual arrival time will be
  // calculated in UpdateCapacityQueue.
  queue_size_bytes_ += packet.size;
  capacity_link_.push({packet, packet.send_time_us});
  if (!next_process_time_us_) {
    next_process_time_us_ = packet.send_time_us + kDefaultProcessDelay.us();
  }

  return true;
}

absl::optional<int64_t> SimulatedNetwork::NextDeliveryTimeUs() const {
  RTC_DCHECK_RUNS_SERIALIZED(&process_checker_);
  return next_process_time_us_;
}

void SimulatedNetwork::UpdateCapacityQueue(ConfigState state,
                                           int64_t time_now_us) {
  bool needs_sort = false;

  // Catch for thread races.
  if (time_now_us < last_capacity_link_visit_us_.value_or(time_now_us))
    return;

  int64_t time_us = last_capacity_link_visit_us_.value_or(time_now_us);
  // Check the capacity link first.
  while (!capacity_link_.empty()) {
    int64_t time_until_front_exits_us = 0;
    if (state.config.link_capacity_kbps > 0) {
      int64_t remaining_bits =
          capacity_link_.front().packet.size * 8 - pending_drain_bits_;
      RTC_DCHECK(remaining_bits > 0);
      // Division rounded up - packet not delivered until its last bit is.
      time_until_front_exits_us =
          (1000 * remaining_bits + state.config.link_capacity_kbps - 1) /
          state.config.link_capacity_kbps;
    }

    if (time_us + time_until_front_exits_us > time_now_us) {
      // Packet at front will not exit yet. Will not enter here on infinite
      // capacity(=0) so no special handling needed.
      pending_drain_bits_ +=
          ((time_now_us - time_us) * state.config.link_capacity_kbps) / 1000;
      break;
    }
    if (state.config.link_capacity_kbps > 0) {
      pending_drain_bits_ +=
          (time_until_front_exits_us * state.config.link_capacity_kbps) / 1000;
    } else {
      // Enough to drain the whole queue.
      pending_drain_bits_ = queue_size_bytes_ * 8;
    }

    // Time to get this packet.
    PacketInfo packet = capacity_link_.front();
    capacity_link_.pop();

    time_us += time_until_front_exits_us;
    if (state.config.codel_active_queue_management) {
      while (!capacity_link_.empty() &&
             codel_controller_.DropDequeuedPacket(
                 Timestamp::Micros(time_us),
                 Timestamp::Micros(capacity_link_.front().packet.send_time_us),
                 DataSize::Bytes(capacity_link_.front().packet.size),
                 DataSize::Bytes(queue_size_bytes_))) {
        PacketInfo dropped = capacity_link_.front();
        capacity_link_.pop();
        queue_size_bytes_ -= dropped.packet.size;
        dropped.arrival_time_us = PacketDeliveryInfo::kNotReceived;
        delay_link_.emplace_back(dropped);
      }
    }
    RTC_DCHECK(time_us >= packet.packet.send_time_us);
    packet.arrival_time_us =
        std::max(state.pause_transmission_until_us, time_us);
    queue_size_bytes_ -= packet.packet.size;
    pending_drain_bits_ -= packet.packet.size * 8;
    RTC_DCHECK(pending_drain_bits_ >= 0);

    // Drop packets at an average rate of |state.config.loss_percent| with
    // and average loss burst length of |state.config.avg_burst_loss_length|.
    if ((bursting_ && random_.Rand<double>() < state.prob_loss_bursting) ||
        (!bursting_ && random_.Rand<double>() < state.prob_start_bursting)) {
      bursting_ = true;
      packet.arrival_time_us = PacketDeliveryInfo::kNotReceived;
    } else {
      bursting_ = false;
      int64_t arrival_time_jitter_us = std::max(
          random_.Gaussian(state.config.queue_delay_ms * 1000,
                           state.config.delay_standard_deviation_ms * 1000),
          0.0);

      // If reordering is not allowed then adjust arrival_time_jitter
      // to make sure all packets are sent in order.
      int64_t last_arrival_time_us =
          delay_link_.empty() ? -1 : delay_link_.back().arrival_time_us;
      if (!state.config.allow_reordering && !delay_link_.empty() &&
          packet.arrival_time_us + arrival_time_jitter_us <
              last_arrival_time_us) {
        arrival_time_jitter_us = last_arrival_time_us - packet.arrival_time_us;
      }
      packet.arrival_time_us += arrival_time_jitter_us;
      if (packet.arrival_time_us >= last_arrival_time_us) {
        last_arrival_time_us = packet.arrival_time_us;
      } else {
        needs_sort = true;
      }
    }
    delay_link_.emplace_back(packet);
  }
  last_capacity_link_visit_us_ = time_now_us;
  // Cannot save unused capacity for later.
  pending_drain_bits_ = std::min(pending_drain_bits_, queue_size_bytes_ * 8);

  if (needs_sort) {
    // Packet(s) arrived out of order, make sure list is sorted.
    std::sort(delay_link_.begin(), delay_link_.end(),
              [](const PacketInfo& p1, const PacketInfo& p2) {
                return p1.arrival_time_us < p2.arrival_time_us;
              });
  }
}

SimulatedNetwork::ConfigState SimulatedNetwork::GetConfigState() const {
  rtc::CritScope crit(&config_lock_);
  return config_state_;
}

std::vector<PacketDeliveryInfo> SimulatedNetwork::DequeueDeliverablePackets(
    int64_t receive_time_us) {
  RTC_DCHECK_RUNS_SERIALIZED(&process_checker_);
  UpdateCapacityQueue(GetConfigState(), receive_time_us);
  std::vector<PacketDeliveryInfo> packets_to_deliver;
  // Check the extra delay queue.
  while (!delay_link_.empty() &&
         receive_time_us >= delay_link_.front().arrival_time_us) {
    PacketInfo packet_info = delay_link_.front();
    packets_to_deliver.emplace_back(
        PacketDeliveryInfo(packet_info.packet, packet_info.arrival_time_us));
    delay_link_.pop_front();
  }

  if (!delay_link_.empty()) {
    next_process_time_us_ = delay_link_.front().arrival_time_us;
  } else if (!capacity_link_.empty()) {
    next_process_time_us_ = receive_time_us + kDefaultProcessDelay.us();
  } else {
    next_process_time_us_.reset();
  }
  return packets_to_deliver;
}

}  // namespace webrtc