aboutsummaryrefslogtreecommitdiff
path: root/modules/audio_processing/aec3/echo_remover.cc
blob: 6c177c9a10448f06307bbb25eaa3f22a39d5a09e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
/*
 *  Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "modules/audio_processing/aec3/echo_remover.h"

#include <math.h>
#include <stddef.h>

#include <algorithm>
#include <array>
#include <cmath>
#include <memory>

#include "api/array_view.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/aec3/aec3_fft.h"
#include "modules/audio_processing/aec3/aec_state.h"
#include "modules/audio_processing/aec3/comfort_noise_generator.h"
#include "modules/audio_processing/aec3/echo_path_variability.h"
#include "modules/audio_processing/aec3/echo_remover_metrics.h"
#include "modules/audio_processing/aec3/fft_data.h"
#include "modules/audio_processing/aec3/render_buffer.h"
#include "modules/audio_processing/aec3/render_signal_analyzer.h"
#include "modules/audio_processing/aec3/residual_echo_estimator.h"
#include "modules/audio_processing/aec3/subtractor.h"
#include "modules/audio_processing/aec3/subtractor_output.h"
#include "modules/audio_processing/aec3/suppression_filter.h"
#include "modules/audio_processing/aec3/suppression_gain.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/atomic_ops.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"

namespace webrtc {

namespace {

// Maximum number of channels for which the capture channel data is stored on
// the stack. If the number of channels are larger than this, they are stored
// using scratch memory that is pre-allocated on the heap. The reason for this
// partitioning is not to waste heap space for handling the more common numbers
// of channels, while at the same time not limiting the support for higher
// numbers of channels by enforcing the capture channel data to be stored on the
// stack using a fixed maximum value.
constexpr size_t kMaxNumChannelsOnStack = 2;

// Chooses the number of channels to store on the heap when that is required due
// to the number of capture channels being larger than the pre-defined number
// of channels to store on the stack.
size_t NumChannelsOnHeap(size_t num_capture_channels) {
  return num_capture_channels > kMaxNumChannelsOnStack ? num_capture_channels
                                                       : 0;
}

void LinearEchoPower(const FftData& E,
                     const FftData& Y,
                     std::array<float, kFftLengthBy2Plus1>* S2) {
  for (size_t k = 0; k < E.re.size(); ++k) {
    (*S2)[k] = (Y.re[k] - E.re[k]) * (Y.re[k] - E.re[k]) +
               (Y.im[k] - E.im[k]) * (Y.im[k] - E.im[k]);
  }
}

// Fades between two input signals using a fix-sized transition.
void SignalTransition(rtc::ArrayView<const float> from,
                      rtc::ArrayView<const float> to,
                      rtc::ArrayView<float> out) {
  if (from == to) {
    RTC_DCHECK_EQ(to.size(), out.size());
    std::copy(to.begin(), to.end(), out.begin());
  } else {
    constexpr size_t kTransitionSize = 30;
    constexpr float kOneByTransitionSizePlusOne = 1.f / (kTransitionSize + 1);

    RTC_DCHECK_EQ(from.size(), to.size());
    RTC_DCHECK_EQ(from.size(), out.size());
    RTC_DCHECK_LE(kTransitionSize, out.size());

    for (size_t k = 0; k < kTransitionSize; ++k) {
      float a = (k + 1) * kOneByTransitionSizePlusOne;
      out[k] = a * to[k] + (1.f - a) * from[k];
    }

    std::copy(to.begin() + kTransitionSize, to.end(),
              out.begin() + kTransitionSize);
  }
}

// Computes a windowed (square root Hanning) padded FFT and updates the related
// memory.
void WindowedPaddedFft(const Aec3Fft& fft,
                       rtc::ArrayView<const float> v,
                       rtc::ArrayView<float> v_old,
                       FftData* V) {
  fft.PaddedFft(v, v_old, Aec3Fft::Window::kSqrtHanning, V);
  std::copy(v.begin(), v.end(), v_old.begin());
}

// Class for removing the echo from the capture signal.
class EchoRemoverImpl final : public EchoRemover {
 public:
  EchoRemoverImpl(const EchoCanceller3Config& config,
                  int sample_rate_hz,
                  size_t num_render_channels,
                  size_t num_capture_channels);
  ~EchoRemoverImpl() override;
  EchoRemoverImpl(const EchoRemoverImpl&) = delete;
  EchoRemoverImpl& operator=(const EchoRemoverImpl&) = delete;

  void GetMetrics(EchoControl::Metrics* metrics) const override;

  // Removes the echo from a block of samples from the capture signal. The
  // supplied render signal is assumed to be pre-aligned with the capture
  // signal.
  void ProcessCapture(
      EchoPathVariability echo_path_variability,
      bool capture_signal_saturation,
      const absl::optional<DelayEstimate>& external_delay,
      RenderBuffer* render_buffer,
      std::vector<std::vector<std::vector<float>>>* linear_output,
      std::vector<std::vector<std::vector<float>>>* capture) override;

  // Updates the status on whether echo leakage is detected in the output of the
  // echo remover.
  void UpdateEchoLeakageStatus(bool leakage_detected) override {
    echo_leakage_detected_ = leakage_detected;
  }

  void SetCaptureOutputUsage(bool capture_output_used) override {
    capture_output_used_ = capture_output_used;
  }

 private:
  // Selects which of the coarse and refined linear filter outputs that is most
  // appropriate to pass to the suppressor and forms the linear filter output by
  // smoothly transition between those.
  void FormLinearFilterOutput(const SubtractorOutput& subtractor_output,
                              rtc::ArrayView<float> output);

  static int instance_count_;
  const EchoCanceller3Config config_;
  const Aec3Fft fft_;
  std::unique_ptr<ApmDataDumper> data_dumper_;
  const Aec3Optimization optimization_;
  const int sample_rate_hz_;
  const size_t num_render_channels_;
  const size_t num_capture_channels_;
  const bool use_coarse_filter_output_;
  Subtractor subtractor_;
  SuppressionGain suppression_gain_;
  ComfortNoiseGenerator cng_;
  SuppressionFilter suppression_filter_;
  RenderSignalAnalyzer render_signal_analyzer_;
  ResidualEchoEstimator residual_echo_estimator_;
  bool echo_leakage_detected_ = false;
  bool capture_output_used_ = true;
  AecState aec_state_;
  EchoRemoverMetrics metrics_;
  std::vector<std::array<float, kFftLengthBy2>> e_old_;
  std::vector<std::array<float, kFftLengthBy2>> y_old_;
  size_t block_counter_ = 0;
  int gain_change_hangover_ = 0;
  bool refined_filter_output_last_selected_ = true;

  std::vector<std::array<float, kFftLengthBy2>> e_heap_;
  std::vector<std::array<float, kFftLengthBy2Plus1>> Y2_heap_;
  std::vector<std::array<float, kFftLengthBy2Plus1>> E2_heap_;
  std::vector<std::array<float, kFftLengthBy2Plus1>> R2_heap_;
  std::vector<std::array<float, kFftLengthBy2Plus1>> S2_linear_heap_;
  std::vector<FftData> Y_heap_;
  std::vector<FftData> E_heap_;
  std::vector<FftData> comfort_noise_heap_;
  std::vector<FftData> high_band_comfort_noise_heap_;
  std::vector<SubtractorOutput> subtractor_output_heap_;
};

int EchoRemoverImpl::instance_count_ = 0;

EchoRemoverImpl::EchoRemoverImpl(const EchoCanceller3Config& config,
                                 int sample_rate_hz,
                                 size_t num_render_channels,
                                 size_t num_capture_channels)
    : config_(config),
      fft_(),
      data_dumper_(
          new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
      optimization_(DetectOptimization()),
      sample_rate_hz_(sample_rate_hz),
      num_render_channels_(num_render_channels),
      num_capture_channels_(num_capture_channels),
      use_coarse_filter_output_(
          config_.filter.enable_coarse_filter_output_usage),
      subtractor_(config,
                  num_render_channels_,
                  num_capture_channels_,
                  data_dumper_.get(),
                  optimization_),
      suppression_gain_(config_,
                        optimization_,
                        sample_rate_hz,
                        num_capture_channels),
      cng_(config_, optimization_, num_capture_channels_),
      suppression_filter_(optimization_,
                          sample_rate_hz_,
                          num_capture_channels_),
      render_signal_analyzer_(config_),
      residual_echo_estimator_(config_, num_render_channels),
      aec_state_(config_, num_capture_channels_),
      e_old_(num_capture_channels_, {0.f}),
      y_old_(num_capture_channels_, {0.f}),
      e_heap_(NumChannelsOnHeap(num_capture_channels_), {0.f}),
      Y2_heap_(NumChannelsOnHeap(num_capture_channels_)),
      E2_heap_(NumChannelsOnHeap(num_capture_channels_)),
      R2_heap_(NumChannelsOnHeap(num_capture_channels_)),
      S2_linear_heap_(NumChannelsOnHeap(num_capture_channels_)),
      Y_heap_(NumChannelsOnHeap(num_capture_channels_)),
      E_heap_(NumChannelsOnHeap(num_capture_channels_)),
      comfort_noise_heap_(NumChannelsOnHeap(num_capture_channels_)),
      high_band_comfort_noise_heap_(NumChannelsOnHeap(num_capture_channels_)),
      subtractor_output_heap_(NumChannelsOnHeap(num_capture_channels_)) {
  RTC_DCHECK(ValidFullBandRate(sample_rate_hz));
}

EchoRemoverImpl::~EchoRemoverImpl() = default;

void EchoRemoverImpl::GetMetrics(EchoControl::Metrics* metrics) const {
  // Echo return loss (ERL) is inverted to go from gain to attenuation.
  metrics->echo_return_loss = -10.0 * std::log10(aec_state_.ErlTimeDomain());
  metrics->echo_return_loss_enhancement =
      Log2TodB(aec_state_.FullBandErleLog2());
}

void EchoRemoverImpl::ProcessCapture(
    EchoPathVariability echo_path_variability,
    bool capture_signal_saturation,
    const absl::optional<DelayEstimate>& external_delay,
    RenderBuffer* render_buffer,
    std::vector<std::vector<std::vector<float>>>* linear_output,
    std::vector<std::vector<std::vector<float>>>* capture) {
  ++block_counter_;
  const std::vector<std::vector<std::vector<float>>>& x =
      render_buffer->Block(0);
  std::vector<std::vector<std::vector<float>>>* y = capture;
  RTC_DCHECK(render_buffer);
  RTC_DCHECK(y);
  RTC_DCHECK_EQ(x.size(), NumBandsForRate(sample_rate_hz_));
  RTC_DCHECK_EQ(y->size(), NumBandsForRate(sample_rate_hz_));
  RTC_DCHECK_EQ(x[0].size(), num_render_channels_);
  RTC_DCHECK_EQ((*y)[0].size(), num_capture_channels_);
  RTC_DCHECK_EQ(x[0][0].size(), kBlockSize);
  RTC_DCHECK_EQ((*y)[0][0].size(), kBlockSize);

  // Stack allocated data to use when the number of channels is low.
  std::array<std::array<float, kFftLengthBy2>, kMaxNumChannelsOnStack> e_stack;
  std::array<std::array<float, kFftLengthBy2Plus1>, kMaxNumChannelsOnStack>
      Y2_stack;
  std::array<std::array<float, kFftLengthBy2Plus1>, kMaxNumChannelsOnStack>
      E2_stack;
  std::array<std::array<float, kFftLengthBy2Plus1>, kMaxNumChannelsOnStack>
      R2_stack;
  std::array<std::array<float, kFftLengthBy2Plus1>, kMaxNumChannelsOnStack>
      S2_linear_stack;
  std::array<FftData, kMaxNumChannelsOnStack> Y_stack;
  std::array<FftData, kMaxNumChannelsOnStack> E_stack;
  std::array<FftData, kMaxNumChannelsOnStack> comfort_noise_stack;
  std::array<FftData, kMaxNumChannelsOnStack> high_band_comfort_noise_stack;
  std::array<SubtractorOutput, kMaxNumChannelsOnStack> subtractor_output_stack;

  rtc::ArrayView<std::array<float, kFftLengthBy2>> e(e_stack.data(),
                                                     num_capture_channels_);
  rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> Y2(
      Y2_stack.data(), num_capture_channels_);
  rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> E2(
      E2_stack.data(), num_capture_channels_);
  rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> R2(
      R2_stack.data(), num_capture_channels_);
  rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> S2_linear(
      S2_linear_stack.data(), num_capture_channels_);
  rtc::ArrayView<FftData> Y(Y_stack.data(), num_capture_channels_);
  rtc::ArrayView<FftData> E(E_stack.data(), num_capture_channels_);
  rtc::ArrayView<FftData> comfort_noise(comfort_noise_stack.data(),
                                        num_capture_channels_);
  rtc::ArrayView<FftData> high_band_comfort_noise(
      high_band_comfort_noise_stack.data(), num_capture_channels_);
  rtc::ArrayView<SubtractorOutput> subtractor_output(
      subtractor_output_stack.data(), num_capture_channels_);
  if (NumChannelsOnHeap(num_capture_channels_) > 0) {
    // If the stack-allocated space is too small, use the heap for storing the
    // microphone data.
    e = rtc::ArrayView<std::array<float, kFftLengthBy2>>(e_heap_.data(),
                                                         num_capture_channels_);
    Y2 = rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>>(
        Y2_heap_.data(), num_capture_channels_);
    E2 = rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>>(
        E2_heap_.data(), num_capture_channels_);
    R2 = rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>>(
        R2_heap_.data(), num_capture_channels_);
    S2_linear = rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>>(
        S2_linear_heap_.data(), num_capture_channels_);
    Y = rtc::ArrayView<FftData>(Y_heap_.data(), num_capture_channels_);
    E = rtc::ArrayView<FftData>(E_heap_.data(), num_capture_channels_);
    comfort_noise = rtc::ArrayView<FftData>(comfort_noise_heap_.data(),
                                            num_capture_channels_);
    high_band_comfort_noise = rtc::ArrayView<FftData>(
        high_band_comfort_noise_heap_.data(), num_capture_channels_);
    subtractor_output = rtc::ArrayView<SubtractorOutput>(
        subtractor_output_heap_.data(), num_capture_channels_);
  }

  data_dumper_->DumpWav("aec3_echo_remover_capture_input", kBlockSize,
                        &(*y)[0][0][0], 16000, 1);
  data_dumper_->DumpWav("aec3_echo_remover_render_input", kBlockSize,
                        &x[0][0][0], 16000, 1);
  data_dumper_->DumpRaw("aec3_echo_remover_capture_input", (*y)[0][0]);
  data_dumper_->DumpRaw("aec3_echo_remover_render_input", x[0][0]);

  aec_state_.UpdateCaptureSaturation(capture_signal_saturation);

  if (echo_path_variability.AudioPathChanged()) {
    // Ensure that the gain change is only acted on once per frame.
    if (echo_path_variability.gain_change) {
      if (gain_change_hangover_ == 0) {
        constexpr int kMaxBlocksPerFrame = 3;
        gain_change_hangover_ = kMaxBlocksPerFrame;
        rtc::LoggingSeverity log_level =
            config_.delay.log_warning_on_delay_changes ? rtc::LS_WARNING
                                                       : rtc::LS_VERBOSE;
        RTC_LOG_V(log_level)
            << "Gain change detected at block " << block_counter_;
      } else {
        echo_path_variability.gain_change = false;
      }
    }

    subtractor_.HandleEchoPathChange(echo_path_variability);
    aec_state_.HandleEchoPathChange(echo_path_variability);

    if (echo_path_variability.delay_change !=
        EchoPathVariability::DelayAdjustment::kNone) {
      suppression_gain_.SetInitialState(true);
    }
  }
  if (gain_change_hangover_ > 0) {
    --gain_change_hangover_;
  }

  // Analyze the render signal.
  render_signal_analyzer_.Update(*render_buffer,
                                 aec_state_.MinDirectPathFilterDelay());

  // State transition.
  if (aec_state_.TransitionTriggered()) {
    subtractor_.ExitInitialState();
    suppression_gain_.SetInitialState(false);
  }

  // Perform linear echo cancellation.
  subtractor_.Process(*render_buffer, (*y)[0], render_signal_analyzer_,
                      aec_state_, subtractor_output);

  // Compute spectra.
  for (size_t ch = 0; ch < num_capture_channels_; ++ch) {
    FormLinearFilterOutput(subtractor_output[ch], e[ch]);
    WindowedPaddedFft(fft_, (*y)[0][ch], y_old_[ch], &Y[ch]);
    WindowedPaddedFft(fft_, e[ch], e_old_[ch], &E[ch]);
    LinearEchoPower(E[ch], Y[ch], &S2_linear[ch]);
    Y[ch].Spectrum(optimization_, Y2[ch]);
    E[ch].Spectrum(optimization_, E2[ch]);
  }

  // Optionally return the linear filter output.
  if (linear_output) {
    RTC_DCHECK_GE(1, linear_output->size());
    RTC_DCHECK_EQ(num_capture_channels_, linear_output[0].size());
    for (size_t ch = 0; ch < num_capture_channels_; ++ch) {
      RTC_DCHECK_EQ(kBlockSize, (*linear_output)[0][ch].size());
      std::copy(e[ch].begin(), e[ch].end(), (*linear_output)[0][ch].begin());
    }
  }

  // Update the AEC state information.
  aec_state_.Update(external_delay, subtractor_.FilterFrequencyResponses(),
                    subtractor_.FilterImpulseResponses(), *render_buffer, E2,
                    Y2, subtractor_output);

  // Choose the linear output.
  const auto& Y_fft = aec_state_.UseLinearFilterOutput() ? E : Y;

  data_dumper_->DumpWav("aec3_output_linear", kBlockSize, &(*y)[0][0][0], 16000,
                        1);
  data_dumper_->DumpWav("aec3_output_linear2", kBlockSize, &e[0][0], 16000, 1);

  // Estimate the comfort noise.
  cng_.Compute(aec_state_.SaturatedCapture(), Y2, comfort_noise,
               high_band_comfort_noise);

  // Only do the below processing if the output of the audio processing module
  // is used.
  std::array<float, kFftLengthBy2Plus1> G;
  if (capture_output_used_) {
    // Estimate the residual echo power.
    residual_echo_estimator_.Estimate(aec_state_, *render_buffer, S2_linear, Y2,
                                      suppression_gain_.IsDominantNearend(),
                                      R2);

    // Suppressor nearend estimate.
    if (aec_state_.UsableLinearEstimate()) {
      // E2 is bound by Y2.
      for (size_t ch = 0; ch < num_capture_channels_; ++ch) {
        std::transform(E2[ch].begin(), E2[ch].end(), Y2[ch].begin(),
                       E2[ch].begin(),
                       [](float a, float b) { return std::min(a, b); });
      }
    }
    const auto& nearend_spectrum = aec_state_.UsableLinearEstimate() ? E2 : Y2;

    // Suppressor echo estimate.
    const auto& echo_spectrum =
        aec_state_.UsableLinearEstimate() ? S2_linear : R2;

    // Determine if the suppressor should assume clock drift.
    const bool clock_drift = config_.echo_removal_control.has_clock_drift ||
                             echo_path_variability.clock_drift;

    // Compute preferred gains.
    float high_bands_gain;
    suppression_gain_.GetGain(nearend_spectrum, echo_spectrum, R2,
                              cng_.NoiseSpectrum(), render_signal_analyzer_,
                              aec_state_, x, clock_drift, &high_bands_gain, &G);

    suppression_filter_.ApplyGain(comfort_noise, high_band_comfort_noise, G,
                                  high_bands_gain, Y_fft, y);

  } else {
    G.fill(0.f);
  }

  // Update the metrics.
  metrics_.Update(aec_state_, cng_.NoiseSpectrum()[0], G);

  // Debug outputs for the purpose of development and analysis.
  data_dumper_->DumpWav("aec3_echo_estimate", kBlockSize,
                        &subtractor_output[0].s_refined[0], 16000, 1);
  data_dumper_->DumpRaw("aec3_output", (*y)[0][0]);
  data_dumper_->DumpRaw("aec3_narrow_render",
                        render_signal_analyzer_.NarrowPeakBand() ? 1 : 0);
  data_dumper_->DumpRaw("aec3_N2", cng_.NoiseSpectrum()[0]);
  data_dumper_->DumpRaw("aec3_suppressor_gain", G);
  data_dumper_->DumpWav("aec3_output",
                        rtc::ArrayView<const float>(&(*y)[0][0][0], kBlockSize),
                        16000, 1);
  data_dumper_->DumpRaw("aec3_using_subtractor_output[0]",
                        aec_state_.UseLinearFilterOutput() ? 1 : 0);
  data_dumper_->DumpRaw("aec3_E2", E2[0]);
  data_dumper_->DumpRaw("aec3_S2_linear", S2_linear[0]);
  data_dumper_->DumpRaw("aec3_Y2", Y2[0]);
  data_dumper_->DumpRaw(
      "aec3_X2", render_buffer->Spectrum(
                     aec_state_.MinDirectPathFilterDelay())[/*channel=*/0]);
  data_dumper_->DumpRaw("aec3_R2", R2[0]);
  data_dumper_->DumpRaw("aec3_filter_delay",
                        aec_state_.MinDirectPathFilterDelay());
  data_dumper_->DumpRaw("aec3_capture_saturation",
                        aec_state_.SaturatedCapture() ? 1 : 0);
}

void EchoRemoverImpl::FormLinearFilterOutput(
    const SubtractorOutput& subtractor_output,
    rtc::ArrayView<float> output) {
  RTC_DCHECK_EQ(subtractor_output.e_refined.size(), output.size());
  RTC_DCHECK_EQ(subtractor_output.e_coarse.size(), output.size());
  bool use_refined_output = true;
  if (use_coarse_filter_output_) {
    // As the output of the refined adaptive filter generally should be better
    // than the coarse filter output, add a margin and threshold for when
    // choosing the coarse filter output.
    if (subtractor_output.e2_coarse < 0.9f * subtractor_output.e2_refined &&
        subtractor_output.y2 > 30.f * 30.f * kBlockSize &&
        (subtractor_output.s2_refined > 60.f * 60.f * kBlockSize ||
         subtractor_output.s2_coarse > 60.f * 60.f * kBlockSize)) {
      use_refined_output = false;
    } else {
      // If the refined filter is diverged, choose the filter output that has
      // the lowest power.
      if (subtractor_output.e2_coarse < subtractor_output.e2_refined &&
          subtractor_output.y2 < subtractor_output.e2_refined) {
        use_refined_output = false;
      }
    }
  }

  SignalTransition(refined_filter_output_last_selected_
                       ? subtractor_output.e_refined
                       : subtractor_output.e_coarse,
                   use_refined_output ? subtractor_output.e_refined
                                      : subtractor_output.e_coarse,
                   output);
  refined_filter_output_last_selected_ = use_refined_output;
}

}  // namespace

EchoRemover* EchoRemover::Create(const EchoCanceller3Config& config,
                                 int sample_rate_hz,
                                 size_t num_render_channels,
                                 size_t num_capture_channels) {
  return new EchoRemoverImpl(config, sample_rate_hz, num_render_channels,
                             num_capture_channels);
}

}  // namespace webrtc