aboutsummaryrefslogtreecommitdiff
path: root/modules/audio_processing/agc/agc_manager_direct.cc
blob: 2454d1bbb1300e81bba481c7626a008e6fb657bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
/*
 *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/audio_processing/agc/agc_manager_direct.h"

#include <algorithm>
#include <cmath>

#include "common_audio/include/audio_util.h"
#include "modules/audio_processing/agc/gain_control.h"
#include "modules/audio_processing/agc/gain_map_internal.h"
#include "rtc_base/atomic_ops.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_minmax.h"
#include "system_wrappers/include/field_trial.h"
#include "system_wrappers/include/metrics.h"

namespace webrtc {

namespace {

// Amount the microphone level is lowered with every clipping event.
const int kClippedLevelStep = 15;
// Proportion of clipped samples required to declare a clipping event.
const float kClippedRatioThreshold = 0.1f;
// Time in frames to wait after a clipping event before checking again.
const int kClippedWaitFrames = 300;

// Amount of error we tolerate in the microphone level (presumably due to OS
// quantization) before we assume the user has manually adjusted the microphone.
const int kLevelQuantizationSlack = 25;

const int kDefaultCompressionGain = 7;
const int kMaxCompressionGain = 12;
const int kMinCompressionGain = 2;
// Controls the rate of compression changes towards the target.
const float kCompressionGainStep = 0.05f;

const int kMaxMicLevel = 255;
static_assert(kGainMapSize > kMaxMicLevel, "gain map too small");
const int kMinMicLevel = 12;

// Prevent very large microphone level changes.
const int kMaxResidualGainChange = 15;

// Maximum additional gain allowed to compensate for microphone level
// restrictions from clipping events.
const int kSurplusCompressionGain = 6;

// Returns whether a fall-back solution to choose the maximum level should be
// chosen.
bool UseMaxAnalogChannelLevel() {
  return field_trial::IsEnabled("WebRTC-UseMaxAnalogAgcChannelLevel");
}

// Returns kMinMicLevel if no field trial exists or if it has been disabled.
// Returns a value between 0 and 255 depending on the field-trial string.
// Example: 'WebRTC-Audio-AgcMinMicLevelExperiment/Enabled-80' => returns 80.
int GetMinMicLevel() {
  RTC_LOG(LS_INFO) << "[agc] GetMinMicLevel";
  constexpr char kMinMicLevelFieldTrial[] =
      "WebRTC-Audio-AgcMinMicLevelExperiment";
  if (!webrtc::field_trial::IsEnabled(kMinMicLevelFieldTrial)) {
    RTC_LOG(LS_INFO) << "[agc] Using default min mic level: " << kMinMicLevel;
    return kMinMicLevel;
  }
  const auto field_trial_string =
      webrtc::field_trial::FindFullName(kMinMicLevelFieldTrial);
  int min_mic_level = -1;
  sscanf(field_trial_string.c_str(), "Enabled-%d", &min_mic_level);
  if (min_mic_level >= 0 && min_mic_level <= 255) {
    RTC_LOG(LS_INFO) << "[agc] Experimental min mic level: " << min_mic_level;
    return min_mic_level;
  } else {
    RTC_LOG(LS_WARNING) << "[agc] Invalid parameter for "
                        << kMinMicLevelFieldTrial << ", ignored.";
    return kMinMicLevel;
  }
}

int ClampLevel(int mic_level, int min_mic_level) {
  return rtc::SafeClamp(mic_level, min_mic_level, kMaxMicLevel);
}

int LevelFromGainError(int gain_error, int level, int min_mic_level) {
  RTC_DCHECK_GE(level, 0);
  RTC_DCHECK_LE(level, kMaxMicLevel);
  if (gain_error == 0) {
    return level;
  }

  int new_level = level;
  if (gain_error > 0) {
    while (kGainMap[new_level] - kGainMap[level] < gain_error &&
           new_level < kMaxMicLevel) {
      ++new_level;
    }
  } else {
    while (kGainMap[new_level] - kGainMap[level] > gain_error &&
           new_level > min_mic_level) {
      --new_level;
    }
  }
  return new_level;
}

// Returns the proportion of samples in the buffer which are at full-scale
// (and presumably clipped).
float ComputeClippedRatio(const float* const* audio,
                          size_t num_channels,
                          size_t samples_per_channel) {
  RTC_DCHECK_GT(samples_per_channel, 0);
  int num_clipped = 0;
  for (size_t ch = 0; ch < num_channels; ++ch) {
    int num_clipped_in_ch = 0;
    for (size_t i = 0; i < samples_per_channel; ++i) {
      RTC_DCHECK(audio[ch]);
      if (audio[ch][i] >= 32767.f || audio[ch][i] <= -32768.f) {
        ++num_clipped_in_ch;
      }
    }
    num_clipped = std::max(num_clipped, num_clipped_in_ch);
  }
  return static_cast<float>(num_clipped) / (samples_per_channel);
}

}  // namespace

MonoAgc::MonoAgc(ApmDataDumper* data_dumper,
                 int startup_min_level,
                 int clipped_level_min,
                 bool disable_digital_adaptive,
                 int min_mic_level)
    : min_mic_level_(min_mic_level),
      disable_digital_adaptive_(disable_digital_adaptive),
      agc_(std::make_unique<Agc>()),
      max_level_(kMaxMicLevel),
      max_compression_gain_(kMaxCompressionGain),
      target_compression_(kDefaultCompressionGain),
      compression_(target_compression_),
      compression_accumulator_(compression_),
      startup_min_level_(ClampLevel(startup_min_level, min_mic_level_)),
      clipped_level_min_(clipped_level_min) {}

MonoAgc::~MonoAgc() = default;

void MonoAgc::Initialize() {
  max_level_ = kMaxMicLevel;
  max_compression_gain_ = kMaxCompressionGain;
  target_compression_ = disable_digital_adaptive_ ? 0 : kDefaultCompressionGain;
  compression_ = disable_digital_adaptive_ ? 0 : target_compression_;
  compression_accumulator_ = compression_;
  capture_output_used_ = true;
  check_volume_on_next_process_ = true;
}

void MonoAgc::Process(const int16_t* audio,
                      size_t samples_per_channel,
                      int sample_rate_hz) {
  new_compression_to_set_ = absl::nullopt;

  if (check_volume_on_next_process_) {
    check_volume_on_next_process_ = false;
    // We have to wait until the first process call to check the volume,
    // because Chromium doesn't guarantee it to be valid any earlier.
    CheckVolumeAndReset();
  }

  agc_->Process(audio, samples_per_channel, sample_rate_hz);

  UpdateGain();
  if (!disable_digital_adaptive_) {
    UpdateCompressor();
  }
}

void MonoAgc::HandleClipping() {
  // Always decrease the maximum level, even if the current level is below
  // threshold.
  SetMaxLevel(std::max(clipped_level_min_, max_level_ - kClippedLevelStep));
  if (log_to_histograms_) {
    RTC_HISTOGRAM_BOOLEAN("WebRTC.Audio.AgcClippingAdjustmentAllowed",
                          level_ - kClippedLevelStep >= clipped_level_min_);
  }
  if (level_ > clipped_level_min_) {
    // Don't try to adjust the level if we're already below the limit. As
    // a consequence, if the user has brought the level above the limit, we
    // will still not react until the postproc updates the level.
    SetLevel(std::max(clipped_level_min_, level_ - kClippedLevelStep));
    // Reset the AGCs for all channels since the level has changed.
    agc_->Reset();
  }
}

void MonoAgc::SetLevel(int new_level) {
  int voe_level = stream_analog_level_;
  if (voe_level == 0) {
    RTC_DLOG(LS_INFO)
        << "[agc] VolumeCallbacks returned level=0, taking no action.";
    return;
  }
  if (voe_level < 0 || voe_level > kMaxMicLevel) {
    RTC_LOG(LS_ERROR) << "VolumeCallbacks returned an invalid level="
                      << voe_level;
    return;
  }

  if (voe_level > level_ + kLevelQuantizationSlack ||
      voe_level < level_ - kLevelQuantizationSlack) {
    RTC_DLOG(LS_INFO) << "[agc] Mic volume was manually adjusted. Updating "
                         "stored level from "
                      << level_ << " to " << voe_level;
    level_ = voe_level;
    // Always allow the user to increase the volume.
    if (level_ > max_level_) {
      SetMaxLevel(level_);
    }
    // Take no action in this case, since we can't be sure when the volume
    // was manually adjusted. The compressor will still provide some of the
    // desired gain change.
    agc_->Reset();

    return;
  }

  new_level = std::min(new_level, max_level_);
  if (new_level == level_) {
    return;
  }

  stream_analog_level_ = new_level;
  RTC_DLOG(LS_INFO) << "[agc] voe_level=" << voe_level << ", level_=" << level_
                    << ", new_level=" << new_level;
  level_ = new_level;
}

void MonoAgc::SetMaxLevel(int level) {
  RTC_DCHECK_GE(level, clipped_level_min_);
  max_level_ = level;
  // Scale the |kSurplusCompressionGain| linearly across the restricted
  // level range.
  max_compression_gain_ =
      kMaxCompressionGain + std::floor((1.f * kMaxMicLevel - max_level_) /
                                           (kMaxMicLevel - clipped_level_min_) *
                                           kSurplusCompressionGain +
                                       0.5f);
  RTC_DLOG(LS_INFO) << "[agc] max_level_=" << max_level_
                    << ", max_compression_gain_=" << max_compression_gain_;
}

void MonoAgc::HandleCaptureOutputUsedChange(bool capture_output_used) {
  if (capture_output_used_ == capture_output_used) {
    return;
  }
  capture_output_used_ = capture_output_used;

  if (capture_output_used) {
    // When we start using the output, we should reset things to be safe.
    check_volume_on_next_process_ = true;
  }
}

int MonoAgc::CheckVolumeAndReset() {
  int level = stream_analog_level_;
  // Reasons for taking action at startup:
  // 1) A person starting a call is expected to be heard.
  // 2) Independent of interpretation of |level| == 0 we should raise it so the
  // AGC can do its job properly.
  if (level == 0 && !startup_) {
    RTC_DLOG(LS_INFO)
        << "[agc] VolumeCallbacks returned level=0, taking no action.";
    return 0;
  }
  if (level < 0 || level > kMaxMicLevel) {
    RTC_LOG(LS_ERROR) << "[agc] VolumeCallbacks returned an invalid level="
                      << level;
    return -1;
  }
  RTC_DLOG(LS_INFO) << "[agc] Initial GetMicVolume()=" << level;

  int minLevel = startup_ ? startup_min_level_ : min_mic_level_;
  if (level < minLevel) {
    level = minLevel;
    RTC_DLOG(LS_INFO) << "[agc] Initial volume too low, raising to " << level;
    stream_analog_level_ = level;
  }
  agc_->Reset();
  level_ = level;
  startup_ = false;
  return 0;
}

// Requests the RMS error from AGC and distributes the required gain change
// between the digital compression stage and volume slider. We use the
// compressor first, providing a slack region around the current slider
// position to reduce movement.
//
// If the slider needs to be moved, we check first if the user has adjusted
// it, in which case we take no action and cache the updated level.
void MonoAgc::UpdateGain() {
  int rms_error = 0;
  if (!agc_->GetRmsErrorDb(&rms_error)) {
    // No error update ready.
    return;
  }
  // The compressor will always add at least kMinCompressionGain. In effect,
  // this adjusts our target gain upward by the same amount and rms_error
  // needs to reflect that.
  rms_error += kMinCompressionGain;

  // Handle as much error as possible with the compressor first.
  int raw_compression =
      rtc::SafeClamp(rms_error, kMinCompressionGain, max_compression_gain_);

  // Deemphasize the compression gain error. Move halfway between the current
  // target and the newly received target. This serves to soften perceptible
  // intra-talkspurt adjustments, at the cost of some adaptation speed.
  if ((raw_compression == max_compression_gain_ &&
       target_compression_ == max_compression_gain_ - 1) ||
      (raw_compression == kMinCompressionGain &&
       target_compression_ == kMinCompressionGain + 1)) {
    // Special case to allow the target to reach the endpoints of the
    // compression range. The deemphasis would otherwise halt it at 1 dB shy.
    target_compression_ = raw_compression;
  } else {
    target_compression_ =
        (raw_compression - target_compression_) / 2 + target_compression_;
  }

  // Residual error will be handled by adjusting the volume slider. Use the
  // raw rather than deemphasized compression here as we would otherwise
  // shrink the amount of slack the compressor provides.
  const int residual_gain =
      rtc::SafeClamp(rms_error - raw_compression, -kMaxResidualGainChange,
                     kMaxResidualGainChange);
  RTC_DLOG(LS_INFO) << "[agc] rms_error=" << rms_error
                    << ", target_compression=" << target_compression_
                    << ", residual_gain=" << residual_gain;
  if (residual_gain == 0)
    return;

  int old_level = level_;
  SetLevel(LevelFromGainError(residual_gain, level_, min_mic_level_));
  if (old_level != level_) {
    // level_ was updated by SetLevel; log the new value.
    RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.AgcSetLevel", level_, 1,
                                kMaxMicLevel, 50);
    // Reset the AGC since the level has changed.
    agc_->Reset();
  }
}

void MonoAgc::UpdateCompressor() {
  calls_since_last_gain_log_++;
  if (calls_since_last_gain_log_ == 100) {
    calls_since_last_gain_log_ = 0;
    RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.Agc.DigitalGainApplied",
                                compression_, 0, kMaxCompressionGain,
                                kMaxCompressionGain + 1);
  }
  if (compression_ == target_compression_) {
    return;
  }

  // Adapt the compression gain slowly towards the target, in order to avoid
  // highly perceptible changes.
  if (target_compression_ > compression_) {
    compression_accumulator_ += kCompressionGainStep;
  } else {
    compression_accumulator_ -= kCompressionGainStep;
  }

  // The compressor accepts integer gains in dB. Adjust the gain when
  // we've come within half a stepsize of the nearest integer.  (We don't
  // check for equality due to potential floating point imprecision).
  int new_compression = compression_;
  int nearest_neighbor = std::floor(compression_accumulator_ + 0.5);
  if (std::fabs(compression_accumulator_ - nearest_neighbor) <
      kCompressionGainStep / 2) {
    new_compression = nearest_neighbor;
  }

  // Set the new compression gain.
  if (new_compression != compression_) {
    RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.Agc.DigitalGainUpdated",
                                new_compression, 0, kMaxCompressionGain,
                                kMaxCompressionGain + 1);
    compression_ = new_compression;
    compression_accumulator_ = new_compression;
    new_compression_to_set_ = compression_;
  }
}

int AgcManagerDirect::instance_counter_ = 0;

AgcManagerDirect::AgcManagerDirect(Agc* agc,
                                   int startup_min_level,
                                   int clipped_level_min,
                                   int sample_rate_hz)
    : AgcManagerDirect(/*num_capture_channels*/ 1,
                       startup_min_level,
                       clipped_level_min,
                       /*disable_digital_adaptive*/ false,
                       sample_rate_hz) {
  RTC_DCHECK(channel_agcs_[0]);
  RTC_DCHECK(agc);
  channel_agcs_[0]->set_agc(agc);
}

AgcManagerDirect::AgcManagerDirect(int num_capture_channels,
                                   int startup_min_level,
                                   int clipped_level_min,
                                   bool disable_digital_adaptive,
                                   int sample_rate_hz)
    : data_dumper_(
          new ApmDataDumper(rtc::AtomicOps::Increment(&instance_counter_))),
      use_min_channel_level_(!UseMaxAnalogChannelLevel()),
      sample_rate_hz_(sample_rate_hz),
      num_capture_channels_(num_capture_channels),
      disable_digital_adaptive_(disable_digital_adaptive),
      frames_since_clipped_(kClippedWaitFrames),
      capture_output_used_(true),
      channel_agcs_(num_capture_channels),
      new_compressions_to_set_(num_capture_channels) {
  const int min_mic_level = GetMinMicLevel();
  for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) {
    ApmDataDumper* data_dumper_ch = ch == 0 ? data_dumper_.get() : nullptr;

    channel_agcs_[ch] = std::make_unique<MonoAgc>(
        data_dumper_ch, startup_min_level, clipped_level_min,
        disable_digital_adaptive_, min_mic_level);
  }
  RTC_DCHECK_LT(0, channel_agcs_.size());
  channel_agcs_[0]->ActivateLogging();
}

AgcManagerDirect::~AgcManagerDirect() {}

void AgcManagerDirect::Initialize() {
  RTC_DLOG(LS_INFO) << "AgcManagerDirect::Initialize";
  data_dumper_->InitiateNewSetOfRecordings();
  for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) {
    channel_agcs_[ch]->Initialize();
  }
  capture_output_used_ = true;

  AggregateChannelLevels();
}

void AgcManagerDirect::SetupDigitalGainControl(
    GainControl* gain_control) const {
  RTC_DCHECK(gain_control);
  if (gain_control->set_mode(GainControl::kFixedDigital) != 0) {
    RTC_LOG(LS_ERROR) << "set_mode(GainControl::kFixedDigital) failed.";
  }
  const int target_level_dbfs = disable_digital_adaptive_ ? 0 : 2;
  if (gain_control->set_target_level_dbfs(target_level_dbfs) != 0) {
    RTC_LOG(LS_ERROR) << "set_target_level_dbfs() failed.";
  }
  const int compression_gain_db =
      disable_digital_adaptive_ ? 0 : kDefaultCompressionGain;
  if (gain_control->set_compression_gain_db(compression_gain_db) != 0) {
    RTC_LOG(LS_ERROR) << "set_compression_gain_db() failed.";
  }
  const bool enable_limiter = !disable_digital_adaptive_;
  if (gain_control->enable_limiter(enable_limiter) != 0) {
    RTC_LOG(LS_ERROR) << "enable_limiter() failed.";
  }
}

void AgcManagerDirect::AnalyzePreProcess(const AudioBuffer* audio) {
  RTC_DCHECK(audio);
  AnalyzePreProcess(audio->channels_const(), audio->num_frames());
}

void AgcManagerDirect::AnalyzePreProcess(const float* const* audio,
                                         size_t samples_per_channel) {
  RTC_DCHECK(audio);
  AggregateChannelLevels();
  if (!capture_output_used_) {
    return;
  }

  if (frames_since_clipped_ < kClippedWaitFrames) {
    ++frames_since_clipped_;
    return;
  }

  // Check for clipped samples, as the AGC has difficulty detecting pitch
  // under clipping distortion. We do this in the preprocessing phase in order
  // to catch clipped echo as well.
  //
  // If we find a sufficiently clipped frame, drop the current microphone level
  // and enforce a new maximum level, dropped the same amount from the current
  // maximum. This harsh treatment is an effort to avoid repeated clipped echo
  // events. As compensation for this restriction, the maximum compression
  // gain is increased, through SetMaxLevel().
  float clipped_ratio =
      ComputeClippedRatio(audio, num_capture_channels_, samples_per_channel);

  if (clipped_ratio > kClippedRatioThreshold) {
    RTC_DLOG(LS_INFO) << "[agc] Clipping detected. clipped_ratio="
                      << clipped_ratio;
    for (auto& state_ch : channel_agcs_) {
      state_ch->HandleClipping();
    }
    frames_since_clipped_ = 0;
  }
  AggregateChannelLevels();
}

void AgcManagerDirect::Process(const AudioBuffer* audio) {
  AggregateChannelLevels();

  if (!capture_output_used_) {
    return;
  }

  for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) {
    int16_t* audio_use = nullptr;
    std::array<int16_t, AudioBuffer::kMaxSampleRate / 100> audio_data;
    int num_frames_per_band;
    if (audio) {
      FloatS16ToS16(audio->split_bands_const_f(ch)[0],
                    audio->num_frames_per_band(), audio_data.data());
      audio_use = audio_data.data();
      num_frames_per_band = audio->num_frames_per_band();
    } else {
      // Only used for testing.
      // TODO(peah): Change unittests to only allow on non-null audio input.
      num_frames_per_band = 320;
    }
    channel_agcs_[ch]->Process(audio_use, num_frames_per_band, sample_rate_hz_);
    new_compressions_to_set_[ch] = channel_agcs_[ch]->new_compression();
  }

  AggregateChannelLevels();
}

absl::optional<int> AgcManagerDirect::GetDigitalComressionGain() {
  return new_compressions_to_set_[channel_controlling_gain_];
}

void AgcManagerDirect::HandleCaptureOutputUsedChange(bool capture_output_used) {
  for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) {
    channel_agcs_[ch]->HandleCaptureOutputUsedChange(capture_output_used);
  }
  capture_output_used_ = capture_output_used;
}

float AgcManagerDirect::voice_probability() const {
  float max_prob = 0.f;
  for (const auto& state_ch : channel_agcs_) {
    max_prob = std::max(max_prob, state_ch->voice_probability());
  }

  return max_prob;
}

void AgcManagerDirect::set_stream_analog_level(int level) {
  for (size_t ch = 0; ch < channel_agcs_.size(); ++ch) {
    channel_agcs_[ch]->set_stream_analog_level(level);
  }

  AggregateChannelLevels();
}

void AgcManagerDirect::AggregateChannelLevels() {
  stream_analog_level_ = channel_agcs_[0]->stream_analog_level();
  channel_controlling_gain_ = 0;
  if (use_min_channel_level_) {
    for (size_t ch = 1; ch < channel_agcs_.size(); ++ch) {
      int level = channel_agcs_[ch]->stream_analog_level();
      if (level < stream_analog_level_) {
        stream_analog_level_ = level;
        channel_controlling_gain_ = static_cast<int>(ch);
      }
    }
  } else {
    for (size_t ch = 1; ch < channel_agcs_.size(); ++ch) {
      int level = channel_agcs_[ch]->stream_analog_level();
      if (level > stream_analog_level_) {
        stream_analog_level_ = level;
        channel_controlling_gain_ = static_cast<int>(ch);
      }
    }
  }
}

}  // namespace webrtc