aboutsummaryrefslogtreecommitdiff
path: root/modules/audio_processing/agc2/adaptive_digital_gain_applier.cc
blob: e59b110efeeeea746f9f6b399c58a00c742e6400 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
/*
 *  Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/audio_processing/agc2/adaptive_digital_gain_applier.h"

#include <algorithm>

#include "common_audio/include/audio_util.h"
#include "modules/audio_processing/agc2/agc2_common.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_minmax.h"
#include "system_wrappers/include/metrics.h"

namespace webrtc {
namespace {

constexpr int kHeadroomHistogramMin = 0;
constexpr int kHeadroomHistogramMax = 50;

// This function maps input level to desired applied gain. We want to
// boost the signal so that peaks are at -kHeadroomDbfs. We can't
// apply more than kMaxGainDb gain.
float ComputeGainDb(float input_level_dbfs) {
  // If the level is very low, boost it as much as we can.
  if (input_level_dbfs < -(kHeadroomDbfs + kMaxGainDb)) {
    return kMaxGainDb;
  }
  // We expect to end up here most of the time: the level is below
  // -headroom, but we can boost it to -headroom.
  if (input_level_dbfs < -kHeadroomDbfs) {
    return -kHeadroomDbfs - input_level_dbfs;
  }
  // Otherwise, the level is too high and we can't boost.
  RTC_DCHECK_GE(input_level_dbfs, -kHeadroomDbfs);
  return 0.f;
}

// Returns `target_gain` if the output noise level is below
// `max_output_noise_level_dbfs`; otherwise returns a capped gain so that the
// output noise level equals `max_output_noise_level_dbfs`.
float LimitGainByNoise(float target_gain,
                       float input_noise_level_dbfs,
                       float max_output_noise_level_dbfs,
                       ApmDataDumper& apm_data_dumper) {
  const float max_allowed_gain_db =
      max_output_noise_level_dbfs - input_noise_level_dbfs;
  apm_data_dumper.DumpRaw("agc2_adaptive_gain_applier_max_allowed_gain_db",
                          max_allowed_gain_db);
  return std::min(target_gain, std::max(max_allowed_gain_db, 0.f));
}

float LimitGainByLowConfidence(float target_gain,
                               float last_gain,
                               float limiter_audio_level_dbfs,
                               bool estimate_is_confident) {
  if (estimate_is_confident ||
      limiter_audio_level_dbfs <= kLimiterThresholdForAgcGainDbfs) {
    return target_gain;
  }
  const float limiter_level_before_gain = limiter_audio_level_dbfs - last_gain;

  // Compute a new gain so that `limiter_level_before_gain` + `new_target_gain`
  // is not great than `kLimiterThresholdForAgcGainDbfs`.
  const float new_target_gain = std::max(
      kLimiterThresholdForAgcGainDbfs - limiter_level_before_gain, 0.f);
  return std::min(new_target_gain, target_gain);
}

// Computes how the gain should change during this frame.
// Return the gain difference in db to 'last_gain_db'.
float ComputeGainChangeThisFrameDb(float target_gain_db,
                                   float last_gain_db,
                                   bool gain_increase_allowed,
                                   float max_gain_decrease_db,
                                   float max_gain_increase_db) {
  RTC_DCHECK_GT(max_gain_decrease_db, 0);
  RTC_DCHECK_GT(max_gain_increase_db, 0);
  float target_gain_difference_db = target_gain_db - last_gain_db;
  if (!gain_increase_allowed) {
    target_gain_difference_db = std::min(target_gain_difference_db, 0.f);
  }
  return rtc::SafeClamp(target_gain_difference_db, -max_gain_decrease_db,
                        max_gain_increase_db);
}

// Copies the (multichannel) audio samples from `src` into `dst`.
void CopyAudio(AudioFrameView<const float> src,
               std::vector<std::vector<float>>& dst) {
  RTC_DCHECK_GT(src.num_channels(), 0);
  RTC_DCHECK_GT(src.samples_per_channel(), 0);
  RTC_DCHECK_EQ(dst.size(), src.num_channels());
  for (size_t c = 0; c < src.num_channels(); ++c) {
    rtc::ArrayView<const float> channel_view = src.channel(c);
    RTC_DCHECK_EQ(channel_view.size(), src.samples_per_channel());
    RTC_DCHECK_EQ(dst[c].size(), src.samples_per_channel());
    std::copy(channel_view.begin(), channel_view.end(), dst[c].begin());
  }
}

}  // namespace

AdaptiveDigitalGainApplier::AdaptiveDigitalGainApplier(
    ApmDataDumper* apm_data_dumper,
    int adjacent_speech_frames_threshold,
    float max_gain_change_db_per_second,
    float max_output_noise_level_dbfs,
    bool dry_run)
    : apm_data_dumper_(apm_data_dumper),
      gain_applier_(
          /*hard_clip_samples=*/false,
          /*initial_gain_factor=*/DbToRatio(kInitialAdaptiveDigitalGainDb)),
      adjacent_speech_frames_threshold_(adjacent_speech_frames_threshold),
      max_gain_change_db_per_10ms_(max_gain_change_db_per_second *
                                   kFrameDurationMs / 1000.f),
      max_output_noise_level_dbfs_(max_output_noise_level_dbfs),
      dry_run_(dry_run),
      calls_since_last_gain_log_(0),
      frames_to_gain_increase_allowed_(adjacent_speech_frames_threshold_),
      last_gain_db_(kInitialAdaptiveDigitalGainDb) {
  RTC_DCHECK_GT(max_gain_change_db_per_second, 0.0f);
  RTC_DCHECK_GE(frames_to_gain_increase_allowed_, 1);
  RTC_DCHECK_GE(max_output_noise_level_dbfs_, -90.0f);
  RTC_DCHECK_LE(max_output_noise_level_dbfs_, 0.0f);
  Initialize(/*sample_rate_hz=*/48000, /*num_channels=*/1);
}

void AdaptiveDigitalGainApplier::Initialize(int sample_rate_hz,
                                            int num_channels) {
  if (!dry_run_) {
    return;
  }
  RTC_DCHECK_GT(sample_rate_hz, 0);
  RTC_DCHECK_GT(num_channels, 0);
  int frame_size = rtc::CheckedDivExact(sample_rate_hz, 100);
  bool sample_rate_changed =
      dry_run_frame_.empty() ||  // Handle initialization.
      dry_run_frame_[0].size() != static_cast<size_t>(frame_size);
  bool num_channels_changed =
      dry_run_channels_.size() != static_cast<size_t>(num_channels);
  if (sample_rate_changed || num_channels_changed) {
    // Resize the multichannel audio vector and update the channel pointers.
    dry_run_frame_.resize(num_channels);
    dry_run_channels_.resize(num_channels);
    for (int c = 0; c < num_channels; ++c) {
      dry_run_frame_[c].resize(frame_size);
      dry_run_channels_[c] = dry_run_frame_[c].data();
    }
  }
}

void AdaptiveDigitalGainApplier::Process(const FrameInfo& info,
                                         AudioFrameView<float> frame) {
  RTC_DCHECK_GE(info.speech_level_dbfs, -150.f);
  RTC_DCHECK_GE(frame.num_channels(), 1);
  RTC_DCHECK(
      frame.samples_per_channel() == 80 || frame.samples_per_channel() == 160 ||
      frame.samples_per_channel() == 320 || frame.samples_per_channel() == 480)
      << "`frame` does not look like a 10 ms frame for an APM supported sample "
         "rate";

  // Compute the input level used to select the desired gain.
  RTC_DCHECK_GT(info.headroom_db, 0.0f);
  const float input_level_dbfs = info.speech_level_dbfs + info.headroom_db;

  const float target_gain_db = LimitGainByLowConfidence(
      LimitGainByNoise(ComputeGainDb(input_level_dbfs), info.noise_rms_dbfs,
                       max_output_noise_level_dbfs_, *apm_data_dumper_),
      last_gain_db_, info.limiter_envelope_dbfs, info.speech_level_reliable);

  // Forbid increasing the gain until enough adjacent speech frames are
  // observed.
  bool first_confident_speech_frame = false;
  if (info.speech_probability < kVadConfidenceThreshold) {
    frames_to_gain_increase_allowed_ = adjacent_speech_frames_threshold_;
  } else if (frames_to_gain_increase_allowed_ > 0) {
    frames_to_gain_increase_allowed_--;
    first_confident_speech_frame = frames_to_gain_increase_allowed_ == 0;
  }
  apm_data_dumper_->DumpRaw(
      "agc2_adaptive_gain_applier_frames_to_gain_increase_allowed",
      frames_to_gain_increase_allowed_);

  const bool gain_increase_allowed = frames_to_gain_increase_allowed_ == 0;

  float max_gain_increase_db = max_gain_change_db_per_10ms_;
  if (first_confident_speech_frame) {
    // No gain increase happened while waiting for a long enough speech
    // sequence. Therefore, temporarily allow a faster gain increase.
    RTC_DCHECK(gain_increase_allowed);
    max_gain_increase_db *= adjacent_speech_frames_threshold_;
  }

  const float gain_change_this_frame_db = ComputeGainChangeThisFrameDb(
      target_gain_db, last_gain_db_, gain_increase_allowed,
      /*max_gain_decrease_db=*/max_gain_change_db_per_10ms_,
      max_gain_increase_db);

  apm_data_dumper_->DumpRaw("agc2_adaptive_gain_applier_want_to_change_by_db",
                            target_gain_db - last_gain_db_);
  apm_data_dumper_->DumpRaw("agc2_adaptive_gain_applier_will_change_by_db",
                            gain_change_this_frame_db);

  // Optimization: avoid calling math functions if gain does not
  // change.
  if (gain_change_this_frame_db != 0.f) {
    gain_applier_.SetGainFactor(
        DbToRatio(last_gain_db_ + gain_change_this_frame_db));
  }

  // Modify `frame` only if not running in "dry run" mode.
  if (!dry_run_) {
    gain_applier_.ApplyGain(frame);
  } else {
    // Copy `frame` so that `ApplyGain()` is called (on a copy).
    CopyAudio(frame, dry_run_frame_);
    RTC_DCHECK(!dry_run_channels_.empty());
    AudioFrameView<float> frame_copy(&dry_run_channels_[0],
                                     frame.num_channels(),
                                     frame.samples_per_channel());
    gain_applier_.ApplyGain(frame_copy);
  }

  // Remember that the gain has changed for the next iteration.
  last_gain_db_ = last_gain_db_ + gain_change_this_frame_db;
  apm_data_dumper_->DumpRaw("agc2_adaptive_gain_applier_applied_gain_db",
                            last_gain_db_);

  // Log every 10 seconds.
  calls_since_last_gain_log_++;
  if (calls_since_last_gain_log_ == 1000) {
    calls_since_last_gain_log_ = 0;
    RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.Agc2.EstimatedSpeechLevel",
                                -info.speech_level_dbfs, 0, 100, 101);
    RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.Agc2.EstimatedNoiseLevel",
                                -info.noise_rms_dbfs, 0, 100, 101);
    RTC_HISTOGRAM_COUNTS_LINEAR(
        "WebRTC.Audio.Agc2.Headroom", info.headroom_db, kHeadroomHistogramMin,
        kHeadroomHistogramMax,
        kHeadroomHistogramMax - kHeadroomHistogramMin + 1);
    RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.Agc2.DigitalGainApplied",
                                last_gain_db_, 0, kMaxGainDb, kMaxGainDb + 1);
    RTC_LOG(LS_INFO) << "AGC2 adaptive digital"
                     << " | speech_dbfs: " << info.speech_level_dbfs
                     << " | noise_dbfs: " << info.noise_rms_dbfs
                     << " | headroom_db: " << info.headroom_db
                     << " | gain_db: " << last_gain_db_;
  }
}

}  // namespace webrtc