aboutsummaryrefslogtreecommitdiff
path: root/modules/audio_processing/audio_processing_impl_locking_unittest.cc
blob: ec165aa146a93f843c66f4e7c2d2ad8125da23db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
/*
 *  Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <algorithm>
#include <memory>
#include <vector>

#include "api/array_view.h"
#include "modules/audio_processing/audio_processing_impl.h"
#include "modules/audio_processing/test/audio_processing_builder_for_testing.h"
#include "modules/audio_processing/test/test_utils.h"
#include "rtc_base/event.h"
#include "rtc_base/platform_thread.h"
#include "rtc_base/random.h"
#include "rtc_base/synchronization/mutex.h"
#include "system_wrappers/include/sleep.h"
#include "test/gtest.h"

namespace webrtc {

namespace {

class AudioProcessingImplLockTest;

// Type of the render thread APM API call to use in the test.
enum class RenderApiImpl {
  ProcessReverseStreamImplInteger,
  ProcessReverseStreamImplFloat,
  AnalyzeReverseStreamImplFloat,
};

// Type of the capture thread APM API call to use in the test.
enum class CaptureApiImpl { ProcessStreamImplInteger, ProcessStreamImplFloat };

// The runtime parameter setting scheme to use in the test.
enum class RuntimeParameterSettingScheme {
  SparseStreamMetadataChangeScheme,
  ExtremeStreamMetadataChangeScheme,
  FixedMonoStreamMetadataScheme,
  FixedStereoStreamMetadataScheme
};

// Variant of echo canceller settings to use in the test.
enum class AecType {
  BasicWebRtcAecSettings,
  AecTurnedOff,
  BasicWebRtcAecSettingsWithExtentedFilter,
  BasicWebRtcAecSettingsWithDelayAgnosticAec,
  BasicWebRtcAecSettingsWithAecMobile
};

// Thread-safe random number generator wrapper.
class RandomGenerator {
 public:
  RandomGenerator() : rand_gen_(42U) {}

  int RandInt(int min, int max) {
    MutexLock lock(&mutex_);
    return rand_gen_.Rand(min, max);
  }

  int RandInt(int max) {
    MutexLock lock(&mutex_);
    return rand_gen_.Rand(max);
  }

  float RandFloat() {
    MutexLock lock(&mutex_);
    return rand_gen_.Rand<float>();
  }

 private:
  Mutex mutex_;
  Random rand_gen_ RTC_GUARDED_BY(mutex_);
};

// Variables related to the audio data and formats.
struct AudioFrameData {
  explicit AudioFrameData(int max_frame_size) {
    // Set up the two-dimensional arrays needed for the APM API calls.
    input_framechannels.resize(2 * max_frame_size);
    input_frame.resize(2);
    input_frame[0] = &input_framechannels[0];
    input_frame[1] = &input_framechannels[max_frame_size];

    output_frame_channels.resize(2 * max_frame_size);
    output_frame.resize(2);
    output_frame[0] = &output_frame_channels[0];
    output_frame[1] = &output_frame_channels[max_frame_size];

    frame.resize(2 * max_frame_size);
  }

  std::vector<int16_t> frame;

  std::vector<float*> output_frame;
  std::vector<float> output_frame_channels;
  std::vector<float*> input_frame;
  std::vector<float> input_framechannels;

  int input_sample_rate_hz = 16000;
  int input_number_of_channels = 1;
  int output_sample_rate_hz = 16000;
  int output_number_of_channels = 1;
};

// The configuration for the test.
struct TestConfig {
  // Test case generator for the test configurations to use in the brief tests.
  static std::vector<TestConfig> GenerateBriefTestConfigs() {
    std::vector<TestConfig> test_configs;
    AecType aec_types[] = {AecType::BasicWebRtcAecSettingsWithDelayAgnosticAec,
                           AecType::BasicWebRtcAecSettingsWithAecMobile};
    for (auto aec_type : aec_types) {
      TestConfig test_config;
      test_config.aec_type = aec_type;

      test_config.min_number_of_calls = 300;

      // Perform tests only with the extreme runtime parameter setting scheme.
      test_config.runtime_parameter_setting_scheme =
          RuntimeParameterSettingScheme::ExtremeStreamMetadataChangeScheme;

      // Only test 16 kHz for this test suite.
      test_config.initial_sample_rate_hz = 16000;

      // Create test config for the Int16 processing API function set.
      test_config.render_api_function =
          RenderApiImpl::ProcessReverseStreamImplInteger;
      test_config.capture_api_function =
          CaptureApiImpl::ProcessStreamImplInteger;
      test_configs.push_back(test_config);

      // Create test config for the StreamConfig processing API function set.
      test_config.render_api_function =
          RenderApiImpl::ProcessReverseStreamImplFloat;
      test_config.capture_api_function = CaptureApiImpl::ProcessStreamImplFloat;
      test_configs.push_back(test_config);
    }

    // Return the created test configurations.
    return test_configs;
  }

  // Test case generator for the test configurations to use in the extensive
  // tests.
  static std::vector<TestConfig> GenerateExtensiveTestConfigs() {
    // Lambda functions for the test config generation.
    auto add_processing_apis = [](TestConfig test_config) {
      struct AllowedApiCallCombinations {
        RenderApiImpl render_api;
        CaptureApiImpl capture_api;
      };

      const AllowedApiCallCombinations api_calls[] = {
          {RenderApiImpl::ProcessReverseStreamImplInteger,
           CaptureApiImpl::ProcessStreamImplInteger},
          {RenderApiImpl::ProcessReverseStreamImplFloat,
           CaptureApiImpl::ProcessStreamImplFloat},
          {RenderApiImpl::AnalyzeReverseStreamImplFloat,
           CaptureApiImpl::ProcessStreamImplFloat},
          {RenderApiImpl::ProcessReverseStreamImplInteger,
           CaptureApiImpl::ProcessStreamImplFloat},
          {RenderApiImpl::ProcessReverseStreamImplFloat,
           CaptureApiImpl::ProcessStreamImplInteger}};
      std::vector<TestConfig> out;
      for (auto api_call : api_calls) {
        test_config.render_api_function = api_call.render_api;
        test_config.capture_api_function = api_call.capture_api;
        out.push_back(test_config);
      }
      return out;
    };

    auto add_aec_settings = [](const std::vector<TestConfig>& in) {
      std::vector<TestConfig> out;
      AecType aec_types[] = {
          AecType::BasicWebRtcAecSettings, AecType::AecTurnedOff,
          AecType::BasicWebRtcAecSettingsWithExtentedFilter,
          AecType::BasicWebRtcAecSettingsWithDelayAgnosticAec,
          AecType::BasicWebRtcAecSettingsWithAecMobile};
      for (auto test_config : in) {
        // Due to a VisualStudio 2015 compiler issue, the internal loop
        // variable here cannot override a previously defined name.
        // In other words "type" cannot be named "aec_type" here.
        // https://connect.microsoft.com/VisualStudio/feedback/details/2291755
        for (auto type : aec_types) {
          test_config.aec_type = type;
          out.push_back(test_config);
        }
      }
      return out;
    };

    auto add_settings_scheme = [](const std::vector<TestConfig>& in) {
      std::vector<TestConfig> out;
      RuntimeParameterSettingScheme schemes[] = {
          RuntimeParameterSettingScheme::SparseStreamMetadataChangeScheme,
          RuntimeParameterSettingScheme::ExtremeStreamMetadataChangeScheme,
          RuntimeParameterSettingScheme::FixedMonoStreamMetadataScheme,
          RuntimeParameterSettingScheme::FixedStereoStreamMetadataScheme};

      for (auto test_config : in) {
        for (auto scheme : schemes) {
          test_config.runtime_parameter_setting_scheme = scheme;
          out.push_back(test_config);
        }
      }
      return out;
    };

    auto add_sample_rates = [](const std::vector<TestConfig>& in) {
      const int sample_rates[] = {8000, 16000, 32000, 48000};

      std::vector<TestConfig> out;
      for (auto test_config : in) {
        auto available_rates =
            (test_config.aec_type ==
                     AecType::BasicWebRtcAecSettingsWithAecMobile
                 ? rtc::ArrayView<const int>(sample_rates, 2)
                 : rtc::ArrayView<const int>(sample_rates));

        for (auto rate : available_rates) {
          test_config.initial_sample_rate_hz = rate;
          out.push_back(test_config);
        }
      }
      return out;
    };

    // Generate test configurations of the relevant combinations of the
    // parameters to
    // test.
    TestConfig test_config;
    test_config.min_number_of_calls = 10000;
    return add_sample_rates(add_settings_scheme(
        add_aec_settings(add_processing_apis(test_config))));
  }

  RenderApiImpl render_api_function =
      RenderApiImpl::ProcessReverseStreamImplFloat;
  CaptureApiImpl capture_api_function = CaptureApiImpl::ProcessStreamImplFloat;
  RuntimeParameterSettingScheme runtime_parameter_setting_scheme =
      RuntimeParameterSettingScheme::ExtremeStreamMetadataChangeScheme;
  int initial_sample_rate_hz = 16000;
  AecType aec_type = AecType::BasicWebRtcAecSettingsWithDelayAgnosticAec;
  int min_number_of_calls = 300;
};

// Handler for the frame counters.
class FrameCounters {
 public:
  void IncreaseRenderCounter() {
    MutexLock lock(&mutex_);
    render_count++;
  }

  void IncreaseCaptureCounter() {
    MutexLock lock(&mutex_);
    capture_count++;
  }

  int GetCaptureCounter() const {
    MutexLock lock(&mutex_);
    return capture_count;
  }

  int GetRenderCounter() const {
    MutexLock lock(&mutex_);
    return render_count;
  }

  int CaptureMinusRenderCounters() const {
    MutexLock lock(&mutex_);
    return capture_count - render_count;
  }

  int RenderMinusCaptureCounters() const {
    return -CaptureMinusRenderCounters();
  }

  bool BothCountersExceedeThreshold(int threshold) {
    MutexLock lock(&mutex_);
    return (render_count > threshold && capture_count > threshold);
  }

 private:
  mutable Mutex mutex_;
  int render_count RTC_GUARDED_BY(mutex_) = 0;
  int capture_count RTC_GUARDED_BY(mutex_) = 0;
};

// Class for handling the capture side processing.
class CaptureProcessor {
 public:
  CaptureProcessor(int max_frame_size,
                   RandomGenerator* rand_gen,
                   rtc::Event* render_call_event,
                   rtc::Event* capture_call_event,
                   FrameCounters* shared_counters_state,
                   TestConfig* test_config,
                   AudioProcessing* apm);
  void Process();

 private:
  static const int kMaxCallDifference = 10;
  static const float kCaptureInputFloatLevel;
  static const int kCaptureInputFixLevel = 1024;

  void PrepareFrame();
  void CallApmCaptureSide();
  void ApplyRuntimeSettingScheme();

  RandomGenerator* const rand_gen_ = nullptr;
  rtc::Event* const render_call_event_ = nullptr;
  rtc::Event* const capture_call_event_ = nullptr;
  FrameCounters* const frame_counters_ = nullptr;
  const TestConfig* const test_config_ = nullptr;
  AudioProcessing* const apm_ = nullptr;
  AudioFrameData frame_data_;
};

// Class for handling the stats processing.
class StatsProcessor {
 public:
  StatsProcessor(RandomGenerator* rand_gen,
                 TestConfig* test_config,
                 AudioProcessing* apm);
  void Process();

 private:
  RandomGenerator* rand_gen_ = nullptr;
  TestConfig* test_config_ = nullptr;
  AudioProcessing* apm_ = nullptr;
};

// Class for handling the render side processing.
class RenderProcessor {
 public:
  RenderProcessor(int max_frame_size,
                  RandomGenerator* rand_gen,
                  rtc::Event* render_call_event,
                  rtc::Event* capture_call_event,
                  FrameCounters* shared_counters_state,
                  TestConfig* test_config,
                  AudioProcessing* apm);
  void Process();

 private:
  static const int kMaxCallDifference = 10;
  static const int kRenderInputFixLevel = 16384;
  static const float kRenderInputFloatLevel;

  void PrepareFrame();
  void CallApmRenderSide();
  void ApplyRuntimeSettingScheme();

  RandomGenerator* const rand_gen_ = nullptr;
  rtc::Event* const render_call_event_ = nullptr;
  rtc::Event* const capture_call_event_ = nullptr;
  FrameCounters* const frame_counters_ = nullptr;
  const TestConfig* const test_config_ = nullptr;
  AudioProcessing* const apm_ = nullptr;
  AudioFrameData frame_data_;
  bool first_render_call_ = true;
};

class AudioProcessingImplLockTest
    : public ::testing::TestWithParam<TestConfig> {
 public:
  AudioProcessingImplLockTest();
  bool RunTest();
  bool MaybeEndTest();

 private:
  static const int kTestTimeOutLimit = 10 * 60 * 1000;
  static const int kMaxFrameSize = 480;

  // ::testing::TestWithParam<> implementation
  void SetUp() override;
  void TearDown() override;

  // Thread callback for the render thread
  static void RenderProcessorThreadFunc(void* context) {
    AudioProcessingImplLockTest* impl =
        reinterpret_cast<AudioProcessingImplLockTest*>(context);
    while (!impl->MaybeEndTest()) {
      impl->render_thread_state_.Process();
    }
  }

  // Thread callback for the capture thread
  static void CaptureProcessorThreadFunc(void* context) {
    AudioProcessingImplLockTest* impl =
        reinterpret_cast<AudioProcessingImplLockTest*>(context);
    while (!impl->MaybeEndTest()) {
      impl->capture_thread_state_.Process();
    }
  }

  // Thread callback for the stats thread
  static void StatsProcessorThreadFunc(void* context) {
    AudioProcessingImplLockTest* impl =
        reinterpret_cast<AudioProcessingImplLockTest*>(context);
    while (!impl->MaybeEndTest()) {
      impl->stats_thread_state_.Process();
    }
  }

  // Tests whether all the required render and capture side calls have been
  // done.
  bool TestDone() {
    return frame_counters_.BothCountersExceedeThreshold(
        test_config_.min_number_of_calls);
  }

  // Start the threads used in the test.
  void StartThreads() {
    render_thread_.Start();
    capture_thread_.Start();
    stats_thread_.Start();
  }

  // Event handlers for the test.
  rtc::Event test_complete_;
  rtc::Event render_call_event_;
  rtc::Event capture_call_event_;

  // Thread related variables.
  rtc::PlatformThread render_thread_;
  rtc::PlatformThread capture_thread_;
  rtc::PlatformThread stats_thread_;
  mutable RandomGenerator rand_gen_;

  std::unique_ptr<AudioProcessing> apm_;
  TestConfig test_config_;
  FrameCounters frame_counters_;
  RenderProcessor render_thread_state_;
  CaptureProcessor capture_thread_state_;
  StatsProcessor stats_thread_state_;
};

// Sleeps a random time between 0 and max_sleep milliseconds.
void SleepRandomMs(int max_sleep, RandomGenerator* rand_gen) {
  int sleeptime = rand_gen->RandInt(0, max_sleep);
  SleepMs(sleeptime);
}

// Populates a float audio frame with random data.
void PopulateAudioFrame(float** frame,
                        float amplitude,
                        size_t num_channels,
                        size_t samples_per_channel,
                        RandomGenerator* rand_gen) {
  for (size_t ch = 0; ch < num_channels; ch++) {
    for (size_t k = 0; k < samples_per_channel; k++) {
      // Store random 16 bit quantized float number between +-amplitude.
      frame[ch][k] = amplitude * (2 * rand_gen->RandFloat() - 1);
    }
  }
}

// Populates an integer audio frame with random data.
void PopulateAudioFrame(float amplitude,
                        size_t num_channels,
                        size_t samples_per_channel,
                        rtc::ArrayView<int16_t> frame,
                        RandomGenerator* rand_gen) {
  ASSERT_GT(amplitude, 0);
  ASSERT_LE(amplitude, 32767);
  for (size_t ch = 0; ch < num_channels; ch++) {
    for (size_t k = 0; k < samples_per_channel; k++) {
      // Store random 16 bit number between -(amplitude+1) and
      // amplitude.
      frame[k * ch] = rand_gen->RandInt(2 * amplitude + 1) - amplitude - 1;
    }
  }
}

AudioProcessingImplLockTest::AudioProcessingImplLockTest()
    : render_thread_(RenderProcessorThreadFunc,
                     this,
                     "render",
                     rtc::kRealtimePriority),
      capture_thread_(CaptureProcessorThreadFunc,
                      this,
                      "capture",
                      rtc::kRealtimePriority),
      stats_thread_(StatsProcessorThreadFunc,
                    this,
                    "stats",
                    rtc::kNormalPriority),
      apm_(AudioProcessingBuilderForTesting().Create()),
      render_thread_state_(kMaxFrameSize,
                           &rand_gen_,
                           &render_call_event_,
                           &capture_call_event_,
                           &frame_counters_,
                           &test_config_,
                           apm_.get()),
      capture_thread_state_(kMaxFrameSize,
                            &rand_gen_,
                            &render_call_event_,
                            &capture_call_event_,
                            &frame_counters_,
                            &test_config_,
                            apm_.get()),
      stats_thread_state_(&rand_gen_, &test_config_, apm_.get()) {}

// Run the test with a timeout.
bool AudioProcessingImplLockTest::RunTest() {
  StartThreads();
  return test_complete_.Wait(kTestTimeOutLimit);
}

bool AudioProcessingImplLockTest::MaybeEndTest() {
  if (HasFatalFailure() || TestDone()) {
    test_complete_.Set();
    return true;
  }
  return false;
}

// Setup of test and APM.
void AudioProcessingImplLockTest::SetUp() {
  test_config_ = static_cast<TestConfig>(GetParam());

  AudioProcessing::Config apm_config = apm_->GetConfig();
  apm_config.echo_canceller.enabled =
      (test_config_.aec_type != AecType::AecTurnedOff);
  apm_config.echo_canceller.mobile_mode =
      (test_config_.aec_type == AecType::BasicWebRtcAecSettingsWithAecMobile);
  apm_config.gain_controller1.enabled = true;
  apm_config.gain_controller1.mode =
      AudioProcessing::Config::GainController1::kAdaptiveDigital;
  apm_config.noise_suppression.enabled = true;
  apm_config.voice_detection.enabled = true;
  apm_config.level_estimation.enabled = true;
  apm_->ApplyConfig(apm_config);
}

void AudioProcessingImplLockTest::TearDown() {
  render_call_event_.Set();
  capture_call_event_.Set();
  render_thread_.Stop();
  capture_thread_.Stop();
  stats_thread_.Stop();
}

StatsProcessor::StatsProcessor(RandomGenerator* rand_gen,
                               TestConfig* test_config,
                               AudioProcessing* apm)
    : rand_gen_(rand_gen), test_config_(test_config), apm_(apm) {}

// Implements the callback functionality for the statistics
// collection thread.
void StatsProcessor::Process() {
  SleepRandomMs(100, rand_gen_);

  AudioProcessing::Config apm_config = apm_->GetConfig();
  if (test_config_->aec_type != AecType::AecTurnedOff) {
    EXPECT_TRUE(apm_config.echo_canceller.enabled);
    EXPECT_EQ(apm_config.echo_canceller.mobile_mode,
              (test_config_->aec_type ==
               AecType::BasicWebRtcAecSettingsWithAecMobile));
  } else {
    EXPECT_FALSE(apm_config.echo_canceller.enabled);
  }
  EXPECT_TRUE(apm_config.gain_controller1.enabled);
  EXPECT_TRUE(apm_config.noise_suppression.enabled);

  // The below return value is not testable.
  apm_->GetStatistics();
}

const float CaptureProcessor::kCaptureInputFloatLevel = 0.03125f;

CaptureProcessor::CaptureProcessor(int max_frame_size,
                                   RandomGenerator* rand_gen,
                                   rtc::Event* render_call_event,
                                   rtc::Event* capture_call_event,
                                   FrameCounters* shared_counters_state,
                                   TestConfig* test_config,
                                   AudioProcessing* apm)
    : rand_gen_(rand_gen),
      render_call_event_(render_call_event),
      capture_call_event_(capture_call_event),
      frame_counters_(shared_counters_state),
      test_config_(test_config),
      apm_(apm),
      frame_data_(max_frame_size) {}

// Implements the callback functionality for the capture thread.
void CaptureProcessor::Process() {
  // Sleep a random time to simulate thread jitter.
  SleepRandomMs(3, rand_gen_);

  // Ensure that the number of render and capture calls do not
  // differ too much.
  if (frame_counters_->CaptureMinusRenderCounters() > kMaxCallDifference) {
    render_call_event_->Wait(rtc::Event::kForever);
  }

  // Apply any specified capture side APM non-processing runtime calls.
  ApplyRuntimeSettingScheme();

  // Apply the capture side processing call.
  CallApmCaptureSide();

  // Increase the number of capture-side calls.
  frame_counters_->IncreaseCaptureCounter();

  // Flag to the render thread that another capture API call has occurred
  // by triggering this threads call event.
  capture_call_event_->Set();
}

// Prepares a frame with relevant audio data and metadata.
void CaptureProcessor::PrepareFrame() {
  // Restrict to a common fixed sample rate if the integer
  // interface is used.
  if (test_config_->capture_api_function ==
      CaptureApiImpl::ProcessStreamImplInteger) {
    frame_data_.input_sample_rate_hz = test_config_->initial_sample_rate_hz;
    frame_data_.output_sample_rate_hz = test_config_->initial_sample_rate_hz;
  }

  // Prepare the audio data.
  StreamConfig input_stream_config(frame_data_.input_sample_rate_hz,
                                   frame_data_.input_number_of_channels,
                                   /*has_keyboard=*/false);

  PopulateAudioFrame(kCaptureInputFixLevel, input_stream_config.num_channels(),
                     input_stream_config.num_frames(), frame_data_.frame,
                     rand_gen_);

  PopulateAudioFrame(&frame_data_.input_frame[0], kCaptureInputFloatLevel,
                     input_stream_config.num_channels(),
                     input_stream_config.num_frames(), rand_gen_);
}

// Applies the capture side processing API call.
void CaptureProcessor::CallApmCaptureSide() {
  // Prepare a proper capture side processing API call input.
  PrepareFrame();

  // Set the stream delay.
  apm_->set_stream_delay_ms(30);

  // Set the analog level.
  apm_->set_stream_analog_level(80);

  // Call the specified capture side API processing method.
  StreamConfig input_stream_config(frame_data_.input_sample_rate_hz,
                                   frame_data_.input_number_of_channels,
                                   /*has_keyboard=*/false);
  StreamConfig output_stream_config(frame_data_.output_sample_rate_hz,
                                    frame_data_.output_number_of_channels,
                                    /*has_keyboard=*/false);
  int result = AudioProcessing::kNoError;
  switch (test_config_->capture_api_function) {
    case CaptureApiImpl::ProcessStreamImplInteger:
      result =
          apm_->ProcessStream(frame_data_.frame.data(), input_stream_config,
                              output_stream_config, frame_data_.frame.data());
      break;
    case CaptureApiImpl::ProcessStreamImplFloat:
      result = apm_->ProcessStream(&frame_data_.input_frame[0],
                                   input_stream_config, output_stream_config,
                                   &frame_data_.output_frame[0]);
      break;
    default:
      FAIL();
  }

  // Retrieve the new analog level.
  apm_->recommended_stream_analog_level();

  // Check the return code for error.
  ASSERT_EQ(AudioProcessing::kNoError, result);
}

// Applies any runtime capture APM API calls and audio stream characteristics
// specified by the scheme for the test.
void CaptureProcessor::ApplyRuntimeSettingScheme() {
  const int capture_count_local = frame_counters_->GetCaptureCounter();

  // Update the number of channels and sample rates for the input and output.
  // Note that the counts frequencies for when to set parameters
  // are set using prime numbers in order to ensure that the
  // permutation scheme in the parameter setting changes.
  switch (test_config_->runtime_parameter_setting_scheme) {
    case RuntimeParameterSettingScheme::SparseStreamMetadataChangeScheme:
      if (capture_count_local == 0)
        frame_data_.input_sample_rate_hz = 16000;
      else if (capture_count_local % 11 == 0)
        frame_data_.input_sample_rate_hz = 32000;
      else if (capture_count_local % 73 == 0)
        frame_data_.input_sample_rate_hz = 48000;
      else if (capture_count_local % 89 == 0)
        frame_data_.input_sample_rate_hz = 16000;
      else if (capture_count_local % 97 == 0)
        frame_data_.input_sample_rate_hz = 8000;

      if (capture_count_local == 0)
        frame_data_.input_number_of_channels = 1;
      else if (capture_count_local % 4 == 0)
        frame_data_.input_number_of_channels =
            (frame_data_.input_number_of_channels == 1 ? 2 : 1);

      if (capture_count_local == 0)
        frame_data_.output_sample_rate_hz = 16000;
      else if (capture_count_local % 5 == 0)
        frame_data_.output_sample_rate_hz = 32000;
      else if (capture_count_local % 47 == 0)
        frame_data_.output_sample_rate_hz = 48000;
      else if (capture_count_local % 53 == 0)
        frame_data_.output_sample_rate_hz = 16000;
      else if (capture_count_local % 71 == 0)
        frame_data_.output_sample_rate_hz = 8000;

      if (capture_count_local == 0)
        frame_data_.output_number_of_channels = 1;
      else if (capture_count_local % 8 == 0)
        frame_data_.output_number_of_channels =
            (frame_data_.output_number_of_channels == 1 ? 2 : 1);
      break;
    case RuntimeParameterSettingScheme::ExtremeStreamMetadataChangeScheme:
      if (capture_count_local % 2 == 0) {
        frame_data_.input_number_of_channels = 1;
        frame_data_.input_sample_rate_hz = 16000;
        frame_data_.output_number_of_channels = 1;
        frame_data_.output_sample_rate_hz = 16000;
      } else {
        frame_data_.input_number_of_channels =
            (frame_data_.input_number_of_channels == 1 ? 2 : 1);
        if (frame_data_.input_sample_rate_hz == 8000)
          frame_data_.input_sample_rate_hz = 16000;
        else if (frame_data_.input_sample_rate_hz == 16000)
          frame_data_.input_sample_rate_hz = 32000;
        else if (frame_data_.input_sample_rate_hz == 32000)
          frame_data_.input_sample_rate_hz = 48000;
        else if (frame_data_.input_sample_rate_hz == 48000)
          frame_data_.input_sample_rate_hz = 8000;

        frame_data_.output_number_of_channels =
            (frame_data_.output_number_of_channels == 1 ? 2 : 1);
        if (frame_data_.output_sample_rate_hz == 8000)
          frame_data_.output_sample_rate_hz = 16000;
        else if (frame_data_.output_sample_rate_hz == 16000)
          frame_data_.output_sample_rate_hz = 32000;
        else if (frame_data_.output_sample_rate_hz == 32000)
          frame_data_.output_sample_rate_hz = 48000;
        else if (frame_data_.output_sample_rate_hz == 48000)
          frame_data_.output_sample_rate_hz = 8000;
      }
      break;
    case RuntimeParameterSettingScheme::FixedMonoStreamMetadataScheme:
      if (capture_count_local == 0) {
        frame_data_.input_sample_rate_hz = 16000;
        frame_data_.input_number_of_channels = 1;
        frame_data_.output_sample_rate_hz = 16000;
        frame_data_.output_number_of_channels = 1;
      }
      break;
    case RuntimeParameterSettingScheme::FixedStereoStreamMetadataScheme:
      if (capture_count_local == 0) {
        frame_data_.input_sample_rate_hz = 16000;
        frame_data_.input_number_of_channels = 2;
        frame_data_.output_sample_rate_hz = 16000;
        frame_data_.output_number_of_channels = 2;
      }
      break;
    default:
      FAIL();
  }

  // Call any specified runtime APM setter and
  // getter calls.
  switch (test_config_->runtime_parameter_setting_scheme) {
    case RuntimeParameterSettingScheme::SparseStreamMetadataChangeScheme:
    case RuntimeParameterSettingScheme::FixedMonoStreamMetadataScheme:
      break;
    case RuntimeParameterSettingScheme::ExtremeStreamMetadataChangeScheme:
    case RuntimeParameterSettingScheme::FixedStereoStreamMetadataScheme:
      if (capture_count_local % 2 == 0) {
        ASSERT_EQ(AudioProcessing::Error::kNoError,
                  apm_->set_stream_delay_ms(30));
        apm_->set_stream_key_pressed(true);
      } else {
        ASSERT_EQ(AudioProcessing::Error::kNoError,
                  apm_->set_stream_delay_ms(50));
        apm_->set_stream_key_pressed(false);
      }
      break;
    default:
      FAIL();
  }

  // Restric the number of output channels not to exceed
  // the number of input channels.
  frame_data_.output_number_of_channels =
      std::min(frame_data_.output_number_of_channels,
               frame_data_.input_number_of_channels);
}

const float RenderProcessor::kRenderInputFloatLevel = 0.5f;

RenderProcessor::RenderProcessor(int max_frame_size,
                                 RandomGenerator* rand_gen,
                                 rtc::Event* render_call_event,
                                 rtc::Event* capture_call_event,
                                 FrameCounters* shared_counters_state,
                                 TestConfig* test_config,
                                 AudioProcessing* apm)
    : rand_gen_(rand_gen),
      render_call_event_(render_call_event),
      capture_call_event_(capture_call_event),
      frame_counters_(shared_counters_state),
      test_config_(test_config),
      apm_(apm),
      frame_data_(max_frame_size) {}

// Implements the callback functionality for the render thread.
void RenderProcessor::Process() {
  // Conditional wait to ensure that a capture call has been done
  // before the first render call is performed (implicitly
  // required by the APM API).
  if (first_render_call_) {
    capture_call_event_->Wait(rtc::Event::kForever);
    first_render_call_ = false;
  }

  // Sleep a random time to simulate thread jitter.
  SleepRandomMs(3, rand_gen_);

  // Ensure that the number of render and capture calls do not
  // differ too much.
  if (frame_counters_->RenderMinusCaptureCounters() > kMaxCallDifference) {
    capture_call_event_->Wait(rtc::Event::kForever);
  }

  // Apply any specified render side APM non-processing runtime calls.
  ApplyRuntimeSettingScheme();

  // Apply the render side processing call.
  CallApmRenderSide();

  // Increase the number of render-side calls.
  frame_counters_->IncreaseRenderCounter();

  // Flag to the capture thread that another render API call has occurred
  // by triggering this threads call event.
  render_call_event_->Set();
}

// Prepares the render side frame and the accompanying metadata
// with the appropriate information.
void RenderProcessor::PrepareFrame() {
  // Restrict to a common fixed sample rate if the integer interface is
  // used.
  if ((test_config_->render_api_function ==
       RenderApiImpl::ProcessReverseStreamImplInteger) ||
      (test_config_->aec_type !=
       AecType::BasicWebRtcAecSettingsWithAecMobile)) {
    frame_data_.input_sample_rate_hz = test_config_->initial_sample_rate_hz;
    frame_data_.output_sample_rate_hz = test_config_->initial_sample_rate_hz;
  }

  // Prepare the audio data.
  StreamConfig input_stream_config(frame_data_.input_sample_rate_hz,
                                   frame_data_.input_number_of_channels,
                                   /*has_keyboard=*/false);

  PopulateAudioFrame(kRenderInputFixLevel, input_stream_config.num_channels(),
                     input_stream_config.num_frames(), frame_data_.frame,
                     rand_gen_);

  PopulateAudioFrame(&frame_data_.input_frame[0], kRenderInputFloatLevel,
                     input_stream_config.num_channels(),
                     input_stream_config.num_frames(), rand_gen_);
}

// Makes the render side processing API call.
void RenderProcessor::CallApmRenderSide() {
  // Prepare a proper render side processing API call input.
  PrepareFrame();

  // Call the specified render side API processing method.
  StreamConfig input_stream_config(frame_data_.input_sample_rate_hz,
                                   frame_data_.input_number_of_channels,
                                   /*has_keyboard=*/false);
  StreamConfig output_stream_config(frame_data_.output_sample_rate_hz,
                                    frame_data_.output_number_of_channels,
                                    /*has_keyboard=*/false);
  int result = AudioProcessing::kNoError;
  switch (test_config_->render_api_function) {
    case RenderApiImpl::ProcessReverseStreamImplInteger:
      result = apm_->ProcessReverseStream(
          frame_data_.frame.data(), input_stream_config, output_stream_config,
          frame_data_.frame.data());
      break;
    case RenderApiImpl::ProcessReverseStreamImplFloat:
      result = apm_->ProcessReverseStream(
          &frame_data_.input_frame[0], input_stream_config,
          output_stream_config, &frame_data_.output_frame[0]);
      break;
    case RenderApiImpl::AnalyzeReverseStreamImplFloat:
      result = apm_->AnalyzeReverseStream(&frame_data_.input_frame[0],
                                          input_stream_config);
      break;
    default:
      FAIL();
  }

  // Check the return code for error.
  ASSERT_EQ(AudioProcessing::kNoError, result);
}

// Applies any render capture side APM API calls and audio stream
// characteristics
// specified by the scheme for the test.
void RenderProcessor::ApplyRuntimeSettingScheme() {
  const int render_count_local = frame_counters_->GetRenderCounter();

  // Update the number of channels and sample rates for the input and output.
  // Note that the counts frequencies for when to set parameters
  // are set using prime numbers in order to ensure that the
  // permutation scheme in the parameter setting changes.
  switch (test_config_->runtime_parameter_setting_scheme) {
    case RuntimeParameterSettingScheme::SparseStreamMetadataChangeScheme:
      if (render_count_local == 0)
        frame_data_.input_sample_rate_hz = 16000;
      else if (render_count_local % 47 == 0)
        frame_data_.input_sample_rate_hz = 32000;
      else if (render_count_local % 71 == 0)
        frame_data_.input_sample_rate_hz = 48000;
      else if (render_count_local % 79 == 0)
        frame_data_.input_sample_rate_hz = 16000;
      else if (render_count_local % 83 == 0)
        frame_data_.input_sample_rate_hz = 8000;

      if (render_count_local == 0)
        frame_data_.input_number_of_channels = 1;
      else if (render_count_local % 4 == 0)
        frame_data_.input_number_of_channels =
            (frame_data_.input_number_of_channels == 1 ? 2 : 1);

      if (render_count_local == 0)
        frame_data_.output_sample_rate_hz = 16000;
      else if (render_count_local % 17 == 0)
        frame_data_.output_sample_rate_hz = 32000;
      else if (render_count_local % 19 == 0)
        frame_data_.output_sample_rate_hz = 48000;
      else if (render_count_local % 29 == 0)
        frame_data_.output_sample_rate_hz = 16000;
      else if (render_count_local % 61 == 0)
        frame_data_.output_sample_rate_hz = 8000;

      if (render_count_local == 0)
        frame_data_.output_number_of_channels = 1;
      else if (render_count_local % 8 == 0)
        frame_data_.output_number_of_channels =
            (frame_data_.output_number_of_channels == 1 ? 2 : 1);
      break;
    case RuntimeParameterSettingScheme::ExtremeStreamMetadataChangeScheme:
      if (render_count_local == 0) {
        frame_data_.input_number_of_channels = 1;
        frame_data_.input_sample_rate_hz = 16000;
        frame_data_.output_number_of_channels = 1;
        frame_data_.output_sample_rate_hz = 16000;
      } else {
        frame_data_.input_number_of_channels =
            (frame_data_.input_number_of_channels == 1 ? 2 : 1);
        if (frame_data_.input_sample_rate_hz == 8000)
          frame_data_.input_sample_rate_hz = 16000;
        else if (frame_data_.input_sample_rate_hz == 16000)
          frame_data_.input_sample_rate_hz = 32000;
        else if (frame_data_.input_sample_rate_hz == 32000)
          frame_data_.input_sample_rate_hz = 48000;
        else if (frame_data_.input_sample_rate_hz == 48000)
          frame_data_.input_sample_rate_hz = 8000;

        frame_data_.output_number_of_channels =
            (frame_data_.output_number_of_channels == 1 ? 2 : 1);
        if (frame_data_.output_sample_rate_hz == 8000)
          frame_data_.output_sample_rate_hz = 16000;
        else if (frame_data_.output_sample_rate_hz == 16000)
          frame_data_.output_sample_rate_hz = 32000;
        else if (frame_data_.output_sample_rate_hz == 32000)
          frame_data_.output_sample_rate_hz = 48000;
        else if (frame_data_.output_sample_rate_hz == 48000)
          frame_data_.output_sample_rate_hz = 8000;
      }
      break;
    case RuntimeParameterSettingScheme::FixedMonoStreamMetadataScheme:
      if (render_count_local == 0) {
        frame_data_.input_sample_rate_hz = 16000;
        frame_data_.input_number_of_channels = 1;
        frame_data_.output_sample_rate_hz = 16000;
        frame_data_.output_number_of_channels = 1;
      }
      break;
    case RuntimeParameterSettingScheme::FixedStereoStreamMetadataScheme:
      if (render_count_local == 0) {
        frame_data_.input_sample_rate_hz = 16000;
        frame_data_.input_number_of_channels = 2;
        frame_data_.output_sample_rate_hz = 16000;
        frame_data_.output_number_of_channels = 2;
      }
      break;
    default:
      FAIL();
  }

  // Restric the number of output channels not to exceed
  // the number of input channels.
  frame_data_.output_number_of_channels =
      std::min(frame_data_.output_number_of_channels,
               frame_data_.input_number_of_channels);
}

}  // anonymous namespace

TEST_P(AudioProcessingImplLockTest, LockTest) {
  // Run test and verify that it did not time out.
  ASSERT_TRUE(RunTest());
}

// Instantiate tests from the extreme test configuration set.
INSTANTIATE_TEST_SUITE_P(
    DISABLED_AudioProcessingImplLockExtensive,
    AudioProcessingImplLockTest,
    ::testing::ValuesIn(TestConfig::GenerateExtensiveTestConfigs()));

INSTANTIATE_TEST_SUITE_P(
    AudioProcessingImplLockBrief,
    AudioProcessingImplLockTest,
    ::testing::ValuesIn(TestConfig::GenerateBriefTestConfigs()));

}  // namespace webrtc