aboutsummaryrefslogtreecommitdiff
path: root/modules/audio_processing/audio_processing_performance_unittest.cc
blob: 95858502965930136dcfe46d8208efb7a15dfdec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
/*
 *  Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include <math.h>

#include <algorithm>
#include <memory>
#include <vector>

#include "api/array_view.h"
#include "modules/audio_processing/audio_processing_impl.h"
#include "modules/audio_processing/test/audio_processing_builder_for_testing.h"
#include "modules/audio_processing/test/test_utils.h"
#include "rtc_base/atomic_ops.h"
#include "rtc_base/event.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/platform_thread.h"
#include "rtc_base/random.h"
#include "system_wrappers/include/clock.h"
#include "test/gtest.h"
#include "test/testsupport/perf_test.h"

namespace webrtc {

namespace {

static const bool kPrintAllDurations = false;

class CallSimulator;

// Type of the render thread APM API call to use in the test.
enum class ProcessorType { kRender, kCapture };

// Variant of APM processing settings to use in the test.
enum class SettingsType {
  kDefaultApmDesktop,
  kDefaultApmMobile,
  kAllSubmodulesTurnedOff,
  kDefaultApmDesktopWithoutDelayAgnostic,
  kDefaultApmDesktopWithoutExtendedFilter
};

// Variables related to the audio data and formats.
struct AudioFrameData {
  explicit AudioFrameData(size_t max_frame_size) {
    // Set up the two-dimensional arrays needed for the APM API calls.
    input_framechannels.resize(2 * max_frame_size);
    input_frame.resize(2);
    input_frame[0] = &input_framechannels[0];
    input_frame[1] = &input_framechannels[max_frame_size];

    output_frame_channels.resize(2 * max_frame_size);
    output_frame.resize(2);
    output_frame[0] = &output_frame_channels[0];
    output_frame[1] = &output_frame_channels[max_frame_size];
  }

  std::vector<float> output_frame_channels;
  std::vector<float*> output_frame;
  std::vector<float> input_framechannels;
  std::vector<float*> input_frame;
  StreamConfig input_stream_config;
  StreamConfig output_stream_config;
};

// The configuration for the test.
struct SimulationConfig {
  SimulationConfig(int sample_rate_hz, SettingsType simulation_settings)
      : sample_rate_hz(sample_rate_hz),
        simulation_settings(simulation_settings) {}

  static std::vector<SimulationConfig> GenerateSimulationConfigs() {
    std::vector<SimulationConfig> simulation_configs;
#ifndef WEBRTC_ANDROID
    const SettingsType desktop_settings[] = {
        SettingsType::kDefaultApmDesktop, SettingsType::kAllSubmodulesTurnedOff,
        SettingsType::kDefaultApmDesktopWithoutDelayAgnostic,
        SettingsType::kDefaultApmDesktopWithoutExtendedFilter};

    const int desktop_sample_rates[] = {8000, 16000, 32000, 48000};

    for (auto sample_rate : desktop_sample_rates) {
      for (auto settings : desktop_settings) {
        simulation_configs.push_back(SimulationConfig(sample_rate, settings));
      }
    }
#endif

    const SettingsType mobile_settings[] = {SettingsType::kDefaultApmMobile};

    const int mobile_sample_rates[] = {8000, 16000};

    for (auto sample_rate : mobile_sample_rates) {
      for (auto settings : mobile_settings) {
        simulation_configs.push_back(SimulationConfig(sample_rate, settings));
      }
    }

    return simulation_configs;
  }

  std::string SettingsDescription() const {
    std::string description;
    switch (simulation_settings) {
      case SettingsType::kDefaultApmMobile:
        description = "DefaultApmMobile";
        break;
      case SettingsType::kDefaultApmDesktop:
        description = "DefaultApmDesktop";
        break;
      case SettingsType::kAllSubmodulesTurnedOff:
        description = "AllSubmodulesOff";
        break;
      case SettingsType::kDefaultApmDesktopWithoutDelayAgnostic:
        description = "DefaultApmDesktopWithoutDelayAgnostic";
        break;
      case SettingsType::kDefaultApmDesktopWithoutExtendedFilter:
        description = "DefaultApmDesktopWithoutExtendedFilter";
        break;
    }
    return description;
  }

  int sample_rate_hz = 16000;
  SettingsType simulation_settings = SettingsType::kDefaultApmDesktop;
};

// Handler for the frame counters.
class FrameCounters {
 public:
  void IncreaseRenderCounter() { rtc::AtomicOps::Increment(&render_count_); }

  void IncreaseCaptureCounter() { rtc::AtomicOps::Increment(&capture_count_); }

  int CaptureMinusRenderCounters() const {
    // The return value will be approximate, but that's good enough since
    // by the time we return the value, it's not guaranteed to be correct
    // anyway.
    return rtc::AtomicOps::AcquireLoad(&capture_count_) -
           rtc::AtomicOps::AcquireLoad(&render_count_);
  }

  int RenderMinusCaptureCounters() const {
    return -CaptureMinusRenderCounters();
  }

  bool BothCountersExceedeThreshold(int threshold) const {
    // TODO(tommi): We could use an event to signal this so that we don't need
    // to be polling from the main thread and possibly steal cycles.
    const int capture_count = rtc::AtomicOps::AcquireLoad(&capture_count_);
    const int render_count = rtc::AtomicOps::AcquireLoad(&render_count_);
    return (render_count > threshold && capture_count > threshold);
  }

 private:
  int render_count_ = 0;
  int capture_count_ = 0;
};

// Class that represents a flag that can only be raised.
class LockedFlag {
 public:
  bool get_flag() const { return rtc::AtomicOps::AcquireLoad(&flag_); }

  void set_flag() {
    if (!get_flag())  // read-only operation to avoid affecting the cache-line.
      rtc::AtomicOps::CompareAndSwap(&flag_, 0, 1);
  }

 private:
  int flag_ = 0;
};

// Parent class for the thread processors.
class TimedThreadApiProcessor {
 public:
  TimedThreadApiProcessor(ProcessorType processor_type,
                          Random* rand_gen,
                          FrameCounters* shared_counters_state,
                          LockedFlag* capture_call_checker,
                          CallSimulator* test_framework,
                          const SimulationConfig* simulation_config,
                          AudioProcessing* apm,
                          int num_durations_to_store,
                          float input_level,
                          int num_channels)
      : rand_gen_(rand_gen),
        frame_counters_(shared_counters_state),
        capture_call_checker_(capture_call_checker),
        test_(test_framework),
        simulation_config_(simulation_config),
        apm_(apm),
        frame_data_(kMaxFrameSize),
        clock_(webrtc::Clock::GetRealTimeClock()),
        num_durations_to_store_(num_durations_to_store),
        input_level_(input_level),
        processor_type_(processor_type),
        num_channels_(num_channels) {
    api_call_durations_.reserve(num_durations_to_store_);
  }

  // Implements the callback functionality for the threads.
  bool Process();

  // Method for printing out the simulation statistics.
  void print_processor_statistics(const std::string& processor_name) const {
    const std::string modifier = "_api_call_duration";

    const std::string sample_rate_name =
        "_" + std::to_string(simulation_config_->sample_rate_hz) + "Hz";

    webrtc::test::PrintResultMeanAndError(
        "apm_timing", sample_rate_name, processor_name, GetDurationAverage(),
        GetDurationStandardDeviation(), "us", false);

    if (kPrintAllDurations) {
      webrtc::test::PrintResultList("apm_call_durations", sample_rate_name,
                                    processor_name, api_call_durations_, "us",
                                    false);
    }
  }

  void AddDuration(int64_t duration) {
    if (api_call_durations_.size() < num_durations_to_store_) {
      api_call_durations_.push_back(duration);
    }
  }

 private:
  static const int kMaxCallDifference = 10;
  static const int kMaxFrameSize = 480;
  static const int kNumInitializationFrames = 5;

  int64_t GetDurationStandardDeviation() const {
    double variance = 0;
    const int64_t average_duration = GetDurationAverage();
    for (size_t k = kNumInitializationFrames; k < api_call_durations_.size();
         k++) {
      int64_t tmp = api_call_durations_[k] - average_duration;
      variance += static_cast<double>(tmp * tmp);
    }
    const int denominator = rtc::checked_cast<int>(api_call_durations_.size()) -
                            kNumInitializationFrames;
    return (denominator > 0
                ? rtc::checked_cast<int64_t>(sqrt(variance / denominator))
                : -1);
  }

  int64_t GetDurationAverage() const {
    int64_t average_duration = 0;
    for (size_t k = kNumInitializationFrames; k < api_call_durations_.size();
         k++) {
      average_duration += api_call_durations_[k];
    }
    const int denominator = rtc::checked_cast<int>(api_call_durations_.size()) -
                            kNumInitializationFrames;
    return (denominator > 0 ? average_duration / denominator : -1);
  }

  int ProcessCapture() {
    // Set the stream delay.
    apm_->set_stream_delay_ms(30);

    // Call and time the specified capture side API processing method.
    const int64_t start_time = clock_->TimeInMicroseconds();
    const int result = apm_->ProcessStream(
        &frame_data_.input_frame[0], frame_data_.input_stream_config,
        frame_data_.output_stream_config, &frame_data_.output_frame[0]);
    const int64_t end_time = clock_->TimeInMicroseconds();

    frame_counters_->IncreaseCaptureCounter();

    AddDuration(end_time - start_time);

    if (first_process_call_) {
      // Flag that the capture side has been called at least once
      // (needed to ensure that a capture call has been done
      // before the first render call is performed (implicitly
      // required by the APM API).
      capture_call_checker_->set_flag();
      first_process_call_ = false;
    }
    return result;
  }

  bool ReadyToProcessCapture() {
    return (frame_counters_->CaptureMinusRenderCounters() <=
            kMaxCallDifference);
  }

  int ProcessRender() {
    // Call and time the specified render side API processing method.
    const int64_t start_time = clock_->TimeInMicroseconds();
    const int result = apm_->ProcessReverseStream(
        &frame_data_.input_frame[0], frame_data_.input_stream_config,
        frame_data_.output_stream_config, &frame_data_.output_frame[0]);
    const int64_t end_time = clock_->TimeInMicroseconds();
    frame_counters_->IncreaseRenderCounter();

    AddDuration(end_time - start_time);

    return result;
  }

  bool ReadyToProcessRender() {
    // Do not process until at least one capture call has been done.
    // (implicitly required by the APM API).
    if (first_process_call_ && !capture_call_checker_->get_flag()) {
      return false;
    }

    // Ensure that the number of render and capture calls do not differ too
    // much.
    if (frame_counters_->RenderMinusCaptureCounters() > kMaxCallDifference) {
      return false;
    }

    first_process_call_ = false;
    return true;
  }

  void PrepareFrame() {
    // Lambda function for populating a float multichannel audio frame
    // with random data.
    auto populate_audio_frame = [](float amplitude, size_t num_channels,
                                   size_t samples_per_channel, Random* rand_gen,
                                   float** frame) {
      for (size_t ch = 0; ch < num_channels; ch++) {
        for (size_t k = 0; k < samples_per_channel; k++) {
          // Store random float number with a value between +-amplitude.
          frame[ch][k] = amplitude * (2 * rand_gen->Rand<float>() - 1);
        }
      }
    };

    // Prepare the audio input data and metadata.
    frame_data_.input_stream_config.set_sample_rate_hz(
        simulation_config_->sample_rate_hz);
    frame_data_.input_stream_config.set_num_channels(num_channels_);
    frame_data_.input_stream_config.set_has_keyboard(false);
    populate_audio_frame(input_level_, num_channels_,
                         (simulation_config_->sample_rate_hz *
                          AudioProcessing::kChunkSizeMs / 1000),
                         rand_gen_, &frame_data_.input_frame[0]);

    // Prepare the float audio output data and metadata.
    frame_data_.output_stream_config.set_sample_rate_hz(
        simulation_config_->sample_rate_hz);
    frame_data_.output_stream_config.set_num_channels(1);
    frame_data_.output_stream_config.set_has_keyboard(false);
  }

  bool ReadyToProcess() {
    switch (processor_type_) {
      case ProcessorType::kRender:
        return ReadyToProcessRender();

      case ProcessorType::kCapture:
        return ReadyToProcessCapture();
    }

    // Should not be reached, but the return statement is needed for the code to
    // build successfully on Android.
    RTC_NOTREACHED();
    return false;
  }

  Random* rand_gen_ = nullptr;
  FrameCounters* frame_counters_ = nullptr;
  LockedFlag* capture_call_checker_ = nullptr;
  CallSimulator* test_ = nullptr;
  const SimulationConfig* const simulation_config_ = nullptr;
  AudioProcessing* apm_ = nullptr;
  AudioFrameData frame_data_;
  webrtc::Clock* clock_;
  const size_t num_durations_to_store_;
  std::vector<double> api_call_durations_;
  const float input_level_;
  bool first_process_call_ = true;
  const ProcessorType processor_type_;
  const int num_channels_ = 1;
};

// Class for managing the test simulation.
class CallSimulator : public ::testing::TestWithParam<SimulationConfig> {
 public:
  CallSimulator()
      : rand_gen_(42U),
        simulation_config_(static_cast<SimulationConfig>(GetParam())) {}

  // Run the call simulation with a timeout.
  bool Run() {
    StartThreads();

    bool result = test_complete_.Wait(kTestTimeout);

    StopThreads();

    render_thread_state_->print_processor_statistics(
        simulation_config_.SettingsDescription() + "_render");
    capture_thread_state_->print_processor_statistics(
        simulation_config_.SettingsDescription() + "_capture");

    return result;
  }

  // Tests whether all the required render and capture side calls have been
  // done.
  bool MaybeEndTest() {
    if (frame_counters_.BothCountersExceedeThreshold(kMinNumFramesToProcess)) {
      test_complete_.Set();
      return true;
    }
    return false;
  }

 private:
  static const float kCaptureInputFloatLevel;
  static const float kRenderInputFloatLevel;
  static const int kMinNumFramesToProcess = 150;
  static const int32_t kTestTimeout = 3 * 10 * kMinNumFramesToProcess;

  // Stop all running threads.
  void StopThreads() {
    render_thread_.Finalize();
    capture_thread_.Finalize();
  }

  // Simulator and APM setup.
  void SetUp() override {
    // Lambda function for setting the default APM runtime settings for desktop.
    auto set_default_desktop_apm_runtime_settings = [](AudioProcessing* apm) {
      AudioProcessing::Config apm_config = apm->GetConfig();
      apm_config.echo_canceller.enabled = true;
      apm_config.echo_canceller.mobile_mode = false;
      apm_config.noise_suppression.enabled = true;
      apm_config.gain_controller1.enabled = true;
      apm_config.gain_controller1.mode =
          AudioProcessing::Config::GainController1::kAdaptiveDigital;
      apm_config.level_estimation.enabled = true;
      apm_config.voice_detection.enabled = true;
      apm->ApplyConfig(apm_config);
    };

    // Lambda function for setting the default APM runtime settings for mobile.
    auto set_default_mobile_apm_runtime_settings = [](AudioProcessing* apm) {
      AudioProcessing::Config apm_config = apm->GetConfig();
      apm_config.echo_canceller.enabled = true;
      apm_config.echo_canceller.mobile_mode = true;
      apm_config.noise_suppression.enabled = true;
      apm_config.gain_controller1.mode =
          AudioProcessing::Config::GainController1::kAdaptiveDigital;
      apm_config.level_estimation.enabled = true;
      apm_config.voice_detection.enabled = true;
      apm->ApplyConfig(apm_config);
    };

    // Lambda function for turning off all of the APM runtime settings
    // submodules.
    auto turn_off_default_apm_runtime_settings = [](AudioProcessing* apm) {
      AudioProcessing::Config apm_config = apm->GetConfig();
      apm_config.echo_canceller.enabled = false;
      apm_config.gain_controller1.enabled = false;
      apm_config.level_estimation.enabled = false;
      apm_config.noise_suppression.enabled = false;
      apm_config.voice_detection.enabled = false;
      apm->ApplyConfig(apm_config);
    };

    int num_capture_channels = 1;
    switch (simulation_config_.simulation_settings) {
      case SettingsType::kDefaultApmMobile: {
        apm_.reset(AudioProcessingBuilderForTesting().Create());
        ASSERT_TRUE(!!apm_);
        set_default_mobile_apm_runtime_settings(apm_.get());
        break;
      }
      case SettingsType::kDefaultApmDesktop: {
        Config config;
        apm_.reset(AudioProcessingBuilderForTesting().Create(config));
        ASSERT_TRUE(!!apm_);
        set_default_desktop_apm_runtime_settings(apm_.get());
        break;
      }
      case SettingsType::kAllSubmodulesTurnedOff: {
        apm_.reset(AudioProcessingBuilderForTesting().Create());
        ASSERT_TRUE(!!apm_);
        turn_off_default_apm_runtime_settings(apm_.get());
        break;
      }
      case SettingsType::kDefaultApmDesktopWithoutDelayAgnostic: {
        Config config;
        apm_.reset(AudioProcessingBuilderForTesting().Create(config));
        ASSERT_TRUE(!!apm_);
        set_default_desktop_apm_runtime_settings(apm_.get());
        break;
      }
      case SettingsType::kDefaultApmDesktopWithoutExtendedFilter: {
        Config config;
        apm_.reset(AudioProcessingBuilderForTesting().Create(config));
        ASSERT_TRUE(!!apm_);
        set_default_desktop_apm_runtime_settings(apm_.get());
        break;
      }
    }

    render_thread_state_.reset(new TimedThreadApiProcessor(
        ProcessorType::kRender, &rand_gen_, &frame_counters_,
        &capture_call_checker_, this, &simulation_config_, apm_.get(),
        kMinNumFramesToProcess, kRenderInputFloatLevel, 1));
    capture_thread_state_.reset(new TimedThreadApiProcessor(
        ProcessorType::kCapture, &rand_gen_, &frame_counters_,
        &capture_call_checker_, this, &simulation_config_, apm_.get(),
        kMinNumFramesToProcess, kCaptureInputFloatLevel, num_capture_channels));
  }

  // Start the threads used in the test.
  void StartThreads() {
    const auto attributes =
        rtc::ThreadAttributes().SetPriority(rtc::ThreadPriority::kRealtime);
    render_thread_ = rtc::PlatformThread::SpawnJoinable(
        [this] {
          while (render_thread_state_->Process()) {
          }
        },
        "render", attributes);
    capture_thread_ = rtc::PlatformThread::SpawnJoinable(
        [this] {
          while (capture_thread_state_->Process()) {
          }
        },
        "capture", attributes);
  }

  // Event handler for the test.
  rtc::Event test_complete_;

  // Thread related variables.
  Random rand_gen_;

  std::unique_ptr<AudioProcessing> apm_;
  const SimulationConfig simulation_config_;
  FrameCounters frame_counters_;
  LockedFlag capture_call_checker_;
  std::unique_ptr<TimedThreadApiProcessor> render_thread_state_;
  std::unique_ptr<TimedThreadApiProcessor> capture_thread_state_;
  rtc::PlatformThread render_thread_;
  rtc::PlatformThread capture_thread_;
};

// Implements the callback functionality for the threads.
bool TimedThreadApiProcessor::Process() {
  PrepareFrame();

  // Wait in a spinlock manner until it is ok to start processing.
  // Note that SleepMs is not applicable since it only allows sleeping
  // on a millisecond basis which is too long.
  // TODO(tommi): This loop may affect the performance of the test that it's
  // meant to measure.  See if we could use events instead to signal readiness.
  while (!ReadyToProcess()) {
  }

  int result = AudioProcessing::kNoError;
  switch (processor_type_) {
    case ProcessorType::kRender:
      result = ProcessRender();
      break;
    case ProcessorType::kCapture:
      result = ProcessCapture();
      break;
  }

  EXPECT_EQ(result, AudioProcessing::kNoError);

  return !test_->MaybeEndTest();
}

const float CallSimulator::kRenderInputFloatLevel = 0.5f;
const float CallSimulator::kCaptureInputFloatLevel = 0.03125f;
}  // anonymous namespace

// TODO(peah): Reactivate once issue 7712 has been resolved.
TEST_P(CallSimulator, DISABLED_ApiCallDurationTest) {
  // Run test and verify that it did not time out.
  EXPECT_TRUE(Run());
}

INSTANTIATE_TEST_SUITE_P(
    AudioProcessingPerformanceTest,
    CallSimulator,
    ::testing::ValuesIn(SimulationConfig::GenerateSimulationConfigs()));

}  // namespace webrtc