aboutsummaryrefslogtreecommitdiff
path: root/modules/audio_processing/include/audio_processing.h
blob: 7daac86ee31beac7fc03f907c95169372ee528a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#ifndef MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_
#define MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_

// MSVC++ requires this to be set before any other includes to get M_PI.
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif

#include <math.h>
#include <stddef.h>  // size_t
#include <stdio.h>   // FILE
#include <string.h>

#include <vector>

#include "absl/types/optional.h"
#include "api/audio/echo_canceller3_config.h"
#include "api/audio/echo_control.h"
#include "api/scoped_refptr.h"
#include "modules/audio_processing/include/audio_generator.h"
#include "modules/audio_processing/include/audio_processing_statistics.h"
#include "modules/audio_processing/include/config.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/deprecation.h"
#include "rtc_base/ref_count.h"
#include "rtc_base/system/rtc_export.h"

namespace webrtc {

class AecDump;
class AudioBuffer;

class StreamConfig;
class ProcessingConfig;

class EchoDetector;
class CustomAudioAnalyzer;
class CustomProcessing;

// Use to enable experimental gain control (AGC). At startup the experimental
// AGC moves the microphone volume up to |startup_min_volume| if the current
// microphone volume is set too low. The value is clamped to its operating range
// [12, 255]. Here, 255 maps to 100%.
//
// Must be provided through AudioProcessingBuilder().Create(config).
#if defined(WEBRTC_CHROMIUM_BUILD)
static const int kAgcStartupMinVolume = 85;
#else
static const int kAgcStartupMinVolume = 0;
#endif  // defined(WEBRTC_CHROMIUM_BUILD)
static constexpr int kClippedLevelMin = 70;

// To be deprecated: Please instead use the flag in the
// AudioProcessing::Config::AnalogGainController.
// TODO(webrtc:5298): Remove.
struct ExperimentalAgc {
  ExperimentalAgc() = default;
  explicit ExperimentalAgc(bool enabled) : enabled(enabled) {}
  ExperimentalAgc(bool enabled,
                  bool enabled_agc2_level_estimator,
                  bool digital_adaptive_disabled)
      : enabled(enabled),
        enabled_agc2_level_estimator(enabled_agc2_level_estimator),
        digital_adaptive_disabled(digital_adaptive_disabled) {}
  // Deprecated constructor: will be removed.
  ExperimentalAgc(bool enabled,
                  bool enabled_agc2_level_estimator,
                  bool digital_adaptive_disabled,
                  bool analyze_before_aec)
      : enabled(enabled),
        enabled_agc2_level_estimator(enabled_agc2_level_estimator),
        digital_adaptive_disabled(digital_adaptive_disabled) {}
  ExperimentalAgc(bool enabled, int startup_min_volume)
      : enabled(enabled), startup_min_volume(startup_min_volume) {}
  ExperimentalAgc(bool enabled, int startup_min_volume, int clipped_level_min)
      : enabled(enabled),
        startup_min_volume(startup_min_volume),
        clipped_level_min(clipped_level_min) {}
  static const ConfigOptionID identifier = ConfigOptionID::kExperimentalAgc;
  bool enabled = true;
  int startup_min_volume = kAgcStartupMinVolume;
  // Lowest microphone level that will be applied in response to clipping.
  int clipped_level_min = kClippedLevelMin;
  bool enabled_agc2_level_estimator = false;
  bool digital_adaptive_disabled = false;
};

// To be deprecated: Please instead use the flag in the
// AudioProcessing::Config::TransientSuppression.
//
// Use to enable experimental noise suppression. It can be set in the
// constructor or using AudioProcessing::SetExtraOptions().
// TODO(webrtc:5298): Remove.
struct ExperimentalNs {
  ExperimentalNs() : enabled(false) {}
  explicit ExperimentalNs(bool enabled) : enabled(enabled) {}
  static const ConfigOptionID identifier = ConfigOptionID::kExperimentalNs;
  bool enabled;
};

// The Audio Processing Module (APM) provides a collection of voice processing
// components designed for real-time communications software.
//
// APM operates on two audio streams on a frame-by-frame basis. Frames of the
// primary stream, on which all processing is applied, are passed to
// |ProcessStream()|. Frames of the reverse direction stream are passed to
// |ProcessReverseStream()|. On the client-side, this will typically be the
// near-end (capture) and far-end (render) streams, respectively. APM should be
// placed in the signal chain as close to the audio hardware abstraction layer
// (HAL) as possible.
//
// On the server-side, the reverse stream will normally not be used, with
// processing occurring on each incoming stream.
//
// Component interfaces follow a similar pattern and are accessed through
// corresponding getters in APM. All components are disabled at create-time,
// with default settings that are recommended for most situations. New settings
// can be applied without enabling a component. Enabling a component triggers
// memory allocation and initialization to allow it to start processing the
// streams.
//
// Thread safety is provided with the following assumptions to reduce locking
// overhead:
//   1. The stream getters and setters are called from the same thread as
//      ProcessStream(). More precisely, stream functions are never called
//      concurrently with ProcessStream().
//   2. Parameter getters are never called concurrently with the corresponding
//      setter.
//
// APM accepts only linear PCM audio data in chunks of 10 ms. The int16
// interfaces use interleaved data, while the float interfaces use deinterleaved
// data.
//
// Usage example, omitting error checking:
// AudioProcessing* apm = AudioProcessingBuilder().Create();
//
// AudioProcessing::Config config;
// config.echo_canceller.enabled = true;
// config.echo_canceller.mobile_mode = false;
//
// config.gain_controller1.enabled = true;
// config.gain_controller1.mode =
// AudioProcessing::Config::GainController1::kAdaptiveAnalog;
// config.gain_controller1.analog_level_minimum = 0;
// config.gain_controller1.analog_level_maximum = 255;
//
// config.gain_controller2.enabled = true;
//
// config.high_pass_filter.enabled = true;
//
// config.voice_detection.enabled = true;
//
// apm->ApplyConfig(config)
//
// apm->noise_reduction()->set_level(kHighSuppression);
// apm->noise_reduction()->Enable(true);
//
// // Start a voice call...
//
// // ... Render frame arrives bound for the audio HAL ...
// apm->ProcessReverseStream(render_frame);
//
// // ... Capture frame arrives from the audio HAL ...
// // Call required set_stream_ functions.
// apm->set_stream_delay_ms(delay_ms);
// apm->set_stream_analog_level(analog_level);
//
// apm->ProcessStream(capture_frame);
//
// // Call required stream_ functions.
// analog_level = apm->recommended_stream_analog_level();
// has_voice = apm->stream_has_voice();
//
// // Repeate render and capture processing for the duration of the call...
// // Start a new call...
// apm->Initialize();
//
// // Close the application...
// delete apm;
//
class RTC_EXPORT AudioProcessing : public rtc::RefCountInterface {
 public:
  // The struct below constitutes the new parameter scheme for the audio
  // processing. It is being introduced gradually and until it is fully
  // introduced, it is prone to change.
  // TODO(peah): Remove this comment once the new config scheme is fully rolled
  // out.
  //
  // The parameters and behavior of the audio processing module are controlled
  // by changing the default values in the AudioProcessing::Config struct.
  // The config is applied by passing the struct to the ApplyConfig method.
  //
  // This config is intended to be used during setup, and to enable/disable
  // top-level processing effects. Use during processing may cause undesired
  // submodule resets, affecting the audio quality. Use the RuntimeSetting
  // construct for runtime configuration.
  struct RTC_EXPORT Config {

    // Sets the properties of the audio processing pipeline.
    struct RTC_EXPORT Pipeline {
      Pipeline();

      // Maximum allowed processing rate used internally. May only be set to
      // 32000 or 48000 and any differing values will be treated as 48000. The
      // default rate is currently selected based on the CPU architecture, but
      // that logic may change.
      int maximum_internal_processing_rate;
      // Allow multi-channel processing of render audio.
      bool multi_channel_render = false;
      // Allow multi-channel processing of capture audio when AEC3 is active
      // or a custom AEC is injected..
      bool multi_channel_capture = false;
    } pipeline;

    // Enabled the pre-amplifier. It amplifies the capture signal
    // before any other processing is done.
    struct PreAmplifier {
      bool enabled = false;
      float fixed_gain_factor = 1.f;
    } pre_amplifier;

    struct HighPassFilter {
      bool enabled = false;
      bool apply_in_full_band = true;
    } high_pass_filter;

    struct EchoCanceller {
      bool enabled = false;
      bool mobile_mode = false;
      bool export_linear_aec_output = false;
      // Enforce the highpass filter to be on (has no effect for the mobile
      // mode).
      bool enforce_high_pass_filtering = true;
    } echo_canceller;

    // Enables background noise suppression.
    struct NoiseSuppression {
      bool enabled = false;
      enum Level { kLow, kModerate, kHigh, kVeryHigh };
      Level level = kModerate;
      bool analyze_linear_aec_output_when_available = false;
    } noise_suppression;

    // Enables transient suppression.
    struct TransientSuppression {
      bool enabled = false;
    } transient_suppression;

    // Enables reporting of |voice_detected| in webrtc::AudioProcessingStats.
    struct VoiceDetection {
      bool enabled = false;
    } voice_detection;

    // Enables automatic gain control (AGC) functionality.
    // The automatic gain control (AGC) component brings the signal to an
    // appropriate range. This is done by applying a digital gain directly and,
    // in the analog mode, prescribing an analog gain to be applied at the audio
    // HAL.
    // Recommended to be enabled on the client-side.
    struct GainController1 {
      bool enabled = false;
      enum Mode {
        // Adaptive mode intended for use if an analog volume control is
        // available on the capture device. It will require the user to provide
        // coupling between the OS mixer controls and AGC through the
        // stream_analog_level() functions.
        // It consists of an analog gain prescription for the audio device and a
        // digital compression stage.
        kAdaptiveAnalog,
        // Adaptive mode intended for situations in which an analog volume
        // control is unavailable. It operates in a similar fashion to the
        // adaptive analog mode, but with scaling instead applied in the digital
        // domain. As with the analog mode, it additionally uses a digital
        // compression stage.
        kAdaptiveDigital,
        // Fixed mode which enables only the digital compression stage also used
        // by the two adaptive modes.
        // It is distinguished from the adaptive modes by considering only a
        // short time-window of the input signal. It applies a fixed gain
        // through most of the input level range, and compresses (gradually
        // reduces gain with increasing level) the input signal at higher
        // levels. This mode is preferred on embedded devices where the capture
        // signal level is predictable, so that a known gain can be applied.
        kFixedDigital
      };
      Mode mode = kAdaptiveAnalog;
      // Sets the target peak level (or envelope) of the AGC in dBFs (decibels
      // from digital full-scale). The convention is to use positive values. For
      // instance, passing in a value of 3 corresponds to -3 dBFs, or a target
      // level 3 dB below full-scale. Limited to [0, 31].
      int target_level_dbfs = 3;
      // Sets the maximum gain the digital compression stage may apply, in dB. A
      // higher number corresponds to greater compression, while a value of 0
      // will leave the signal uncompressed. Limited to [0, 90].
      // For updates after APM setup, use a RuntimeSetting instead.
      int compression_gain_db = 9;
      // When enabled, the compression stage will hard limit the signal to the
      // target level. Otherwise, the signal will be compressed but not limited
      // above the target level.
      bool enable_limiter = true;
      // Sets the minimum and maximum analog levels of the audio capture device.
      // Must be set if an analog mode is used. Limited to [0, 65535].
      int analog_level_minimum = 0;
      int analog_level_maximum = 255;

      // Enables the analog gain controller functionality.
      struct AnalogGainController {
        bool enabled = true;
        int startup_min_volume = kAgcStartupMinVolume;
        // Lowest analog microphone level that will be applied in response to
        // clipping.
        int clipped_level_min = kClippedLevelMin;
        bool enable_agc2_level_estimator = false;
        bool enable_digital_adaptive = true;
      } analog_gain_controller;
    } gain_controller1;

    // Enables the next generation AGC functionality. This feature replaces the
    // standard methods of gain control in the previous AGC. Enabling this
    // submodule enables an adaptive digital AGC followed by a limiter. By
    // setting |fixed_gain_db|, the limiter can be turned into a compressor that
    // first applies a fixed gain. The adaptive digital AGC can be turned off by
    // setting |adaptive_digital_mode=false|.
    struct GainController2 {
      enum LevelEstimator { kRms, kPeak };
      bool enabled = false;
      struct {
        float gain_db = 0.f;
      } fixed_digital;
      struct {
        bool enabled = false;
        LevelEstimator level_estimator = kRms;
        bool use_saturation_protector = true;
        float extra_saturation_margin_db = 2.f;
      } adaptive_digital;
    } gain_controller2;

    struct ResidualEchoDetector {
      bool enabled = true;
    } residual_echo_detector;

    // Enables reporting of |output_rms_dbfs| in webrtc::AudioProcessingStats.
    struct LevelEstimation {
      bool enabled = false;
    } level_estimation;

    std::string ToString() const;
  };

  // TODO(mgraczyk): Remove once all methods that use ChannelLayout are gone.
  enum ChannelLayout {
    kMono,
    // Left, right.
    kStereo,
    // Mono, keyboard, and mic.
    kMonoAndKeyboard,
    // Left, right, keyboard, and mic.
    kStereoAndKeyboard
  };

  // Specifies the properties of a setting to be passed to AudioProcessing at
  // runtime.
  class RuntimeSetting {
   public:
    enum class Type {
      kNotSpecified,
      kCapturePreGain,
      kCaptureCompressionGain,
      kCaptureFixedPostGain,
      kPlayoutVolumeChange,
      kCustomRenderProcessingRuntimeSetting,
      kPlayoutAudioDeviceChange
    };

    // Play-out audio device properties.
    struct PlayoutAudioDeviceInfo {
      int id;          // Identifies the audio device.
      int max_volume;  // Maximum play-out volume.
    };

    RuntimeSetting() : type_(Type::kNotSpecified), value_(0.f) {}
    ~RuntimeSetting() = default;

    static RuntimeSetting CreateCapturePreGain(float gain) {
      RTC_DCHECK_GE(gain, 1.f) << "Attenuation is not allowed.";
      return {Type::kCapturePreGain, gain};
    }

    // Corresponds to Config::GainController1::compression_gain_db, but for
    // runtime configuration.
    static RuntimeSetting CreateCompressionGainDb(int gain_db) {
      RTC_DCHECK_GE(gain_db, 0);
      RTC_DCHECK_LE(gain_db, 90);
      return {Type::kCaptureCompressionGain, static_cast<float>(gain_db)};
    }

    // Corresponds to Config::GainController2::fixed_digital::gain_db, but for
    // runtime configuration.
    static RuntimeSetting CreateCaptureFixedPostGain(float gain_db) {
      RTC_DCHECK_GE(gain_db, 0.f);
      RTC_DCHECK_LE(gain_db, 90.f);
      return {Type::kCaptureFixedPostGain, gain_db};
    }

    // Creates a runtime setting to notify play-out (aka render) audio device
    // changes.
    static RuntimeSetting CreatePlayoutAudioDeviceChange(
        PlayoutAudioDeviceInfo audio_device) {
      return {Type::kPlayoutAudioDeviceChange, audio_device};
    }

    // Creates a runtime setting to notify play-out (aka render) volume changes.
    // |volume| is the unnormalized volume, the maximum of which
    static RuntimeSetting CreatePlayoutVolumeChange(int volume) {
      return {Type::kPlayoutVolumeChange, volume};
    }

    static RuntimeSetting CreateCustomRenderSetting(float payload) {
      return {Type::kCustomRenderProcessingRuntimeSetting, payload};
    }

    Type type() const { return type_; }
    // Getters do not return a value but instead modify the argument to protect
    // from implicit casting.
    void GetFloat(float* value) const {
      RTC_DCHECK(value);
      *value = value_.float_value;
    }
    void GetInt(int* value) const {
      RTC_DCHECK(value);
      *value = value_.int_value;
    }
    void GetPlayoutAudioDeviceInfo(PlayoutAudioDeviceInfo* value) const {
      RTC_DCHECK(value);
      *value = value_.playout_audio_device_info;
    }

   private:
    RuntimeSetting(Type id, float value) : type_(id), value_(value) {}
    RuntimeSetting(Type id, int value) : type_(id), value_(value) {}
    RuntimeSetting(Type id, PlayoutAudioDeviceInfo value)
        : type_(id), value_(value) {}
    Type type_;
    union U {
      U() {}
      U(int value) : int_value(value) {}
      U(float value) : float_value(value) {}
      U(PlayoutAudioDeviceInfo value) : playout_audio_device_info(value) {}
      float float_value;
      int int_value;
      PlayoutAudioDeviceInfo playout_audio_device_info;
    } value_;
  };

  ~AudioProcessing() override {}

  // Initializes internal states, while retaining all user settings. This
  // should be called before beginning to process a new audio stream. However,
  // it is not necessary to call before processing the first stream after
  // creation.
  //
  // It is also not necessary to call if the audio parameters (sample
  // rate and number of channels) have changed. Passing updated parameters
  // directly to |ProcessStream()| and |ProcessReverseStream()| is permissible.
  // If the parameters are known at init-time though, they may be provided.
  virtual int Initialize() = 0;

  // The int16 interfaces require:
  //   - only |NativeRate|s be used
  //   - that the input, output and reverse rates must match
  //   - that |processing_config.output_stream()| matches
  //     |processing_config.input_stream()|.
  //
  // The float interfaces accept arbitrary rates and support differing input and
  // output layouts, but the output must have either one channel or the same
  // number of channels as the input.
  virtual int Initialize(const ProcessingConfig& processing_config) = 0;

  // Initialize with unpacked parameters. See Initialize() above for details.
  //
  // TODO(mgraczyk): Remove once clients are updated to use the new interface.
  virtual int Initialize(int capture_input_sample_rate_hz,
                         int capture_output_sample_rate_hz,
                         int render_sample_rate_hz,
                         ChannelLayout capture_input_layout,
                         ChannelLayout capture_output_layout,
                         ChannelLayout render_input_layout) = 0;

  // TODO(peah): This method is a temporary solution used to take control
  // over the parameters in the audio processing module and is likely to change.
  virtual void ApplyConfig(const Config& config) = 0;

  // Pass down additional options which don't have explicit setters. This
  // ensures the options are applied immediately.
  virtual void SetExtraOptions(const webrtc::Config& config) = 0;

  // TODO(ajm): Only intended for internal use. Make private and friend the
  // necessary classes?
  virtual int proc_sample_rate_hz() const = 0;
  virtual int proc_split_sample_rate_hz() const = 0;
  virtual size_t num_input_channels() const = 0;
  virtual size_t num_proc_channels() const = 0;
  virtual size_t num_output_channels() const = 0;
  virtual size_t num_reverse_channels() const = 0;

  // Set to true when the output of AudioProcessing will be muted or in some
  // other way not used. Ideally, the captured audio would still be processed,
  // but some components may change behavior based on this information.
  // Default false.
  virtual void set_output_will_be_muted(bool muted) = 0;

  // Enqueue a runtime setting.
  virtual void SetRuntimeSetting(RuntimeSetting setting) = 0;

  // Accepts and produces a 10 ms frame interleaved 16 bit integer audio as
  // specified in |input_config| and |output_config|. |src| and |dest| may use
  // the same memory, if desired.
  virtual int ProcessStream(const int16_t* const src,
                            const StreamConfig& input_config,
                            const StreamConfig& output_config,
                            int16_t* const dest) = 0;

  // Accepts deinterleaved float audio with the range [-1, 1]. Each element of
  // |src| points to a channel buffer, arranged according to |input_stream|. At
  // output, the channels will be arranged according to |output_stream| in
  // |dest|.
  //
  // The output must have one channel or as many channels as the input. |src|
  // and |dest| may use the same memory, if desired.
  virtual int ProcessStream(const float* const* src,
                            const StreamConfig& input_config,
                            const StreamConfig& output_config,
                            float* const* dest) = 0;

  // Accepts and produces a 10 ms frame of interleaved 16 bit integer audio for
  // the reverse direction audio stream as specified in |input_config| and
  // |output_config|. |src| and |dest| may use the same memory, if desired.
  virtual int ProcessReverseStream(const int16_t* const src,
                                   const StreamConfig& input_config,
                                   const StreamConfig& output_config,
                                   int16_t* const dest) = 0;

  // Accepts deinterleaved float audio with the range [-1, 1]. Each element of
  // |data| points to a channel buffer, arranged according to |reverse_config|.
  virtual int ProcessReverseStream(const float* const* src,
                                   const StreamConfig& input_config,
                                   const StreamConfig& output_config,
                                   float* const* dest) = 0;

  // Accepts deinterleaved float audio with the range [-1, 1]. Each element
  // of |data| points to a channel buffer, arranged according to
  // |reverse_config|.
  virtual int AnalyzeReverseStream(const float* const* data,
                                   const StreamConfig& reverse_config) = 0;

  // Returns the most recently produced 10 ms of the linear AEC output at a rate
  // of 16 kHz. If there is more than one capture channel, a mono representation
  // of the input is returned. Returns true/false to indicate whether an output
  // returned.
  virtual bool GetLinearAecOutput(
      rtc::ArrayView<std::array<float, 160>> linear_output) const = 0;

  // This must be called prior to ProcessStream() if and only if adaptive analog
  // gain control is enabled, to pass the current analog level from the audio
  // HAL. Must be within the range provided in Config::GainController1.
  virtual void set_stream_analog_level(int level) = 0;

  // When an analog mode is set, this should be called after ProcessStream()
  // to obtain the recommended new analog level for the audio HAL. It is the
  // user's responsibility to apply this level.
  virtual int recommended_stream_analog_level() const = 0;

  // This must be called if and only if echo processing is enabled.
  //
  // Sets the |delay| in ms between ProcessReverseStream() receiving a far-end
  // frame and ProcessStream() receiving a near-end frame containing the
  // corresponding echo. On the client-side this can be expressed as
  //   delay = (t_render - t_analyze) + (t_process - t_capture)
  // where,
  //   - t_analyze is the time a frame is passed to ProcessReverseStream() and
  //     t_render is the time the first sample of the same frame is rendered by
  //     the audio hardware.
  //   - t_capture is the time the first sample of a frame is captured by the
  //     audio hardware and t_process is the time the same frame is passed to
  //     ProcessStream().
  virtual int set_stream_delay_ms(int delay) = 0;
  virtual int stream_delay_ms() const = 0;

  // Call to signal that a key press occurred (true) or did not occur (false)
  // with this chunk of audio.
  virtual void set_stream_key_pressed(bool key_pressed) = 0;

  // Attaches provided webrtc::AecDump for recording debugging
  // information. Log file and maximum file size logic is supposed to
  // be handled by implementing instance of AecDump. Calling this
  // method when another AecDump is attached resets the active AecDump
  // with a new one. This causes the d-tor of the earlier AecDump to
  // be called. The d-tor call may block until all pending logging
  // tasks are completed.
  virtual void AttachAecDump(std::unique_ptr<AecDump> aec_dump) = 0;

  // If no AecDump is attached, this has no effect. If an AecDump is
  // attached, it's destructor is called. The d-tor may block until
  // all pending logging tasks are completed.
  virtual void DetachAecDump() = 0;

  // Attaches provided webrtc::AudioGenerator for modifying playout audio.
  // Calling this method when another AudioGenerator is attached replaces the
  // active AudioGenerator with a new one.
  virtual void AttachPlayoutAudioGenerator(
      std::unique_ptr<AudioGenerator> audio_generator) = 0;

  // If no AudioGenerator is attached, this has no effect. If an AecDump is
  // attached, its destructor is called.
  virtual void DetachPlayoutAudioGenerator() = 0;

  // Get audio processing statistics.
  virtual AudioProcessingStats GetStatistics() = 0;
  // TODO(webrtc:5298) Deprecated variant. The |has_remote_tracks| argument
  // should be set if there are active remote tracks (this would usually be true
  // during a call). If there are no remote tracks some of the stats will not be
  // set by AudioProcessing, because they only make sense if there is at least
  // one remote track.
  virtual AudioProcessingStats GetStatistics(bool has_remote_tracks) = 0;

  // Returns the last applied configuration.
  virtual AudioProcessing::Config GetConfig() const = 0;

  enum Error {
    // Fatal errors.
    kNoError = 0,
    kUnspecifiedError = -1,
    kCreationFailedError = -2,
    kUnsupportedComponentError = -3,
    kUnsupportedFunctionError = -4,
    kNullPointerError = -5,
    kBadParameterError = -6,
    kBadSampleRateError = -7,
    kBadDataLengthError = -8,
    kBadNumberChannelsError = -9,
    kFileError = -10,
    kStreamParameterNotSetError = -11,
    kNotEnabledError = -12,

    // Warnings are non-fatal.
    // This results when a set_stream_ parameter is out of range. Processing
    // will continue, but the parameter may have been truncated.
    kBadStreamParameterWarning = -13
  };

  // Native rates supported by the integer interfaces.
  enum NativeRate {
    kSampleRate8kHz = 8000,
    kSampleRate16kHz = 16000,
    kSampleRate32kHz = 32000,
    kSampleRate48kHz = 48000
  };

  // TODO(kwiberg): We currently need to support a compiler (Visual C++) that
  // complains if we don't explicitly state the size of the array here. Remove
  // the size when that's no longer the case.
  static constexpr int kNativeSampleRatesHz[4] = {
      kSampleRate8kHz, kSampleRate16kHz, kSampleRate32kHz, kSampleRate48kHz};
  static constexpr size_t kNumNativeSampleRates =
      arraysize(kNativeSampleRatesHz);
  static constexpr int kMaxNativeSampleRateHz =
      kNativeSampleRatesHz[kNumNativeSampleRates - 1];

  static const int kChunkSizeMs = 10;
};

class RTC_EXPORT AudioProcessingBuilder {
 public:
  AudioProcessingBuilder();
  ~AudioProcessingBuilder();
  // The AudioProcessingBuilder takes ownership of the echo_control_factory.
  AudioProcessingBuilder& SetEchoControlFactory(
      std::unique_ptr<EchoControlFactory> echo_control_factory);
  // The AudioProcessingBuilder takes ownership of the capture_post_processing.
  AudioProcessingBuilder& SetCapturePostProcessing(
      std::unique_ptr<CustomProcessing> capture_post_processing);
  // The AudioProcessingBuilder takes ownership of the render_pre_processing.
  AudioProcessingBuilder& SetRenderPreProcessing(
      std::unique_ptr<CustomProcessing> render_pre_processing);
  // The AudioProcessingBuilder takes ownership of the echo_detector.
  AudioProcessingBuilder& SetEchoDetector(
      rtc::scoped_refptr<EchoDetector> echo_detector);
  // The AudioProcessingBuilder takes ownership of the capture_analyzer.
  AudioProcessingBuilder& SetCaptureAnalyzer(
      std::unique_ptr<CustomAudioAnalyzer> capture_analyzer);
  // This creates an APM instance using the previously set components. Calling
  // the Create function resets the AudioProcessingBuilder to its initial state.
  AudioProcessing* Create();
  AudioProcessing* Create(const webrtc::Config& config);

 private:
  std::unique_ptr<EchoControlFactory> echo_control_factory_;
  std::unique_ptr<CustomProcessing> capture_post_processing_;
  std::unique_ptr<CustomProcessing> render_pre_processing_;
  rtc::scoped_refptr<EchoDetector> echo_detector_;
  std::unique_ptr<CustomAudioAnalyzer> capture_analyzer_;
  RTC_DISALLOW_COPY_AND_ASSIGN(AudioProcessingBuilder);
};

class StreamConfig {
 public:
  // sample_rate_hz: The sampling rate of the stream.
  //
  // num_channels: The number of audio channels in the stream, excluding the
  //               keyboard channel if it is present. When passing a
  //               StreamConfig with an array of arrays T*[N],
  //
  //                N == {num_channels + 1  if  has_keyboard
  //                     {num_channels      if  !has_keyboard
  //
  // has_keyboard: True if the stream has a keyboard channel. When has_keyboard
  //               is true, the last channel in any corresponding list of
  //               channels is the keyboard channel.
  StreamConfig(int sample_rate_hz = 0,
               size_t num_channels = 0,
               bool has_keyboard = false)
      : sample_rate_hz_(sample_rate_hz),
        num_channels_(num_channels),
        has_keyboard_(has_keyboard),
        num_frames_(calculate_frames(sample_rate_hz)) {}

  void set_sample_rate_hz(int value) {
    sample_rate_hz_ = value;
    num_frames_ = calculate_frames(value);
  }
  void set_num_channels(size_t value) { num_channels_ = value; }
  void set_has_keyboard(bool value) { has_keyboard_ = value; }

  int sample_rate_hz() const { return sample_rate_hz_; }

  // The number of channels in the stream, not including the keyboard channel if
  // present.
  size_t num_channels() const { return num_channels_; }

  bool has_keyboard() const { return has_keyboard_; }
  size_t num_frames() const { return num_frames_; }
  size_t num_samples() const { return num_channels_ * num_frames_; }

  bool operator==(const StreamConfig& other) const {
    return sample_rate_hz_ == other.sample_rate_hz_ &&
           num_channels_ == other.num_channels_ &&
           has_keyboard_ == other.has_keyboard_;
  }

  bool operator!=(const StreamConfig& other) const { return !(*this == other); }

 private:
  static size_t calculate_frames(int sample_rate_hz) {
    return static_cast<size_t>(AudioProcessing::kChunkSizeMs * sample_rate_hz /
                               1000);
  }

  int sample_rate_hz_;
  size_t num_channels_;
  bool has_keyboard_;
  size_t num_frames_;
};

class ProcessingConfig {
 public:
  enum StreamName {
    kInputStream,
    kOutputStream,
    kReverseInputStream,
    kReverseOutputStream,
    kNumStreamNames,
  };

  const StreamConfig& input_stream() const {
    return streams[StreamName::kInputStream];
  }
  const StreamConfig& output_stream() const {
    return streams[StreamName::kOutputStream];
  }
  const StreamConfig& reverse_input_stream() const {
    return streams[StreamName::kReverseInputStream];
  }
  const StreamConfig& reverse_output_stream() const {
    return streams[StreamName::kReverseOutputStream];
  }

  StreamConfig& input_stream() { return streams[StreamName::kInputStream]; }
  StreamConfig& output_stream() { return streams[StreamName::kOutputStream]; }
  StreamConfig& reverse_input_stream() {
    return streams[StreamName::kReverseInputStream];
  }
  StreamConfig& reverse_output_stream() {
    return streams[StreamName::kReverseOutputStream];
  }

  bool operator==(const ProcessingConfig& other) const {
    for (int i = 0; i < StreamName::kNumStreamNames; ++i) {
      if (this->streams[i] != other.streams[i]) {
        return false;
      }
    }
    return true;
  }

  bool operator!=(const ProcessingConfig& other) const {
    return !(*this == other);
  }

  StreamConfig streams[StreamName::kNumStreamNames];
};

// Experimental interface for a custom analysis submodule.
class CustomAudioAnalyzer {
 public:
  // (Re-) Initializes the submodule.
  virtual void Initialize(int sample_rate_hz, int num_channels) = 0;
  // Analyzes the given capture or render signal.
  virtual void Analyze(const AudioBuffer* audio) = 0;
  // Returns a string representation of the module state.
  virtual std::string ToString() const = 0;

  virtual ~CustomAudioAnalyzer() {}
};

// Interface for a custom processing submodule.
class CustomProcessing {
 public:
  // (Re-)Initializes the submodule.
  virtual void Initialize(int sample_rate_hz, int num_channels) = 0;
  // Processes the given capture or render signal.
  virtual void Process(AudioBuffer* audio) = 0;
  // Returns a string representation of the module state.
  virtual std::string ToString() const = 0;
  // Handles RuntimeSettings. TODO(webrtc:9262): make pure virtual
  // after updating dependencies.
  virtual void SetRuntimeSetting(AudioProcessing::RuntimeSetting setting);

  virtual ~CustomProcessing() {}
};

// Interface for an echo detector submodule.
class EchoDetector : public rtc::RefCountInterface {
 public:
  // (Re-)Initializes the submodule.
  virtual void Initialize(int capture_sample_rate_hz,
                          int num_capture_channels,
                          int render_sample_rate_hz,
                          int num_render_channels) = 0;

  // Analysis (not changing) of the render signal.
  virtual void AnalyzeRenderAudio(rtc::ArrayView<const float> render_audio) = 0;

  // Analysis (not changing) of the capture signal.
  virtual void AnalyzeCaptureAudio(
      rtc::ArrayView<const float> capture_audio) = 0;

  // Pack an AudioBuffer into a vector<float>.
  static void PackRenderAudioBuffer(AudioBuffer* audio,
                                    std::vector<float>* packed_buffer);

  struct Metrics {
    double echo_likelihood;
    double echo_likelihood_recent_max;
  };

  // Collect current metrics from the echo detector.
  virtual Metrics GetMetrics() const = 0;
};

}  // namespace webrtc

#endif  // MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_