aboutsummaryrefslogtreecommitdiff
path: root/modules/audio_processing/residual_echo_detector_unittest.cc
blob: a5f1409516bb9758305b05f1a3d2f84732b8a017 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/*
 *  Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/audio_processing/residual_echo_detector.h"

#include <vector>

#include "rtc_base/ref_counted_object.h"
#include "test/gtest.h"

namespace webrtc {

TEST(ResidualEchoDetectorTests, Echo) {
  auto echo_detector = rtc::make_ref_counted<ResidualEchoDetector>();
  echo_detector->SetReliabilityForTest(1.0f);
  std::vector<float> ones(160, 1.f);
  std::vector<float> zeros(160, 0.f);

  // In this test the capture signal has a delay of 10 frames w.r.t. the render
  // signal, but is otherwise identical. Both signals are periodic with a 20
  // frame interval.
  for (int i = 0; i < 1000; i++) {
    if (i % 20 == 0) {
      echo_detector->AnalyzeRenderAudio(ones);
      echo_detector->AnalyzeCaptureAudio(zeros);
    } else if (i % 20 == 10) {
      echo_detector->AnalyzeRenderAudio(zeros);
      echo_detector->AnalyzeCaptureAudio(ones);
    } else {
      echo_detector->AnalyzeRenderAudio(zeros);
      echo_detector->AnalyzeCaptureAudio(zeros);
    }
  }
  // We expect to detect echo with near certain likelihood.
  auto ed_metrics = echo_detector->GetMetrics();
  ASSERT_TRUE(ed_metrics.echo_likelihood);
  EXPECT_NEAR(1.f, ed_metrics.echo_likelihood.value(), 0.01f);
}

TEST(ResidualEchoDetectorTests, NoEcho) {
  auto echo_detector = rtc::make_ref_counted<ResidualEchoDetector>();
  echo_detector->SetReliabilityForTest(1.0f);
  std::vector<float> ones(160, 1.f);
  std::vector<float> zeros(160, 0.f);

  // In this test the capture signal is always zero, so no echo should be
  // detected.
  for (int i = 0; i < 1000; i++) {
    if (i % 20 == 0) {
      echo_detector->AnalyzeRenderAudio(ones);
    } else {
      echo_detector->AnalyzeRenderAudio(zeros);
    }
    echo_detector->AnalyzeCaptureAudio(zeros);
  }
  // We expect to not detect any echo.
  auto ed_metrics = echo_detector->GetMetrics();
  ASSERT_TRUE(ed_metrics.echo_likelihood);
  EXPECT_NEAR(0.f, ed_metrics.echo_likelihood.value(), 0.01f);
}

TEST(ResidualEchoDetectorTests, EchoWithRenderClockDrift) {
  auto echo_detector = rtc::make_ref_counted<ResidualEchoDetector>();
  echo_detector->SetReliabilityForTest(1.0f);
  std::vector<float> ones(160, 1.f);
  std::vector<float> zeros(160, 0.f);

  // In this test the capture signal has a delay of 10 frames w.r.t. the render
  // signal, but is otherwise identical. Both signals are periodic with a 20
  // frame interval. There is a simulated clock drift of 1% in this test, with
  // the render side producing data slightly faster.
  for (int i = 0; i < 1000; i++) {
    if (i % 20 == 0) {
      echo_detector->AnalyzeRenderAudio(ones);
      echo_detector->AnalyzeCaptureAudio(zeros);
    } else if (i % 20 == 10) {
      echo_detector->AnalyzeRenderAudio(zeros);
      echo_detector->AnalyzeCaptureAudio(ones);
    } else {
      echo_detector->AnalyzeRenderAudio(zeros);
      echo_detector->AnalyzeCaptureAudio(zeros);
    }
    if (i % 100 == 0) {
      // This is causing the simulated clock drift.
      echo_detector->AnalyzeRenderAudio(zeros);
    }
  }
  // We expect to detect echo with high likelihood. Clock drift is harder to
  // correct on the render side than on the capture side. This is due to the
  // render buffer, clock drift can only be discovered after a certain delay.
  // A growing buffer can be caused by jitter or clock drift and it's not
  // possible to make this decision right away. For this reason we only expect
  // an echo likelihood of 75% in this test.
  auto ed_metrics = echo_detector->GetMetrics();
  ASSERT_TRUE(ed_metrics.echo_likelihood);
  EXPECT_GT(ed_metrics.echo_likelihood.value(), 0.75f);
}

TEST(ResidualEchoDetectorTests, EchoWithCaptureClockDrift) {
  auto echo_detector = rtc::make_ref_counted<ResidualEchoDetector>();
  echo_detector->SetReliabilityForTest(1.0f);
  std::vector<float> ones(160, 1.f);
  std::vector<float> zeros(160, 0.f);

  // In this test the capture signal has a delay of 10 frames w.r.t. the render
  // signal, but is otherwise identical. Both signals are periodic with a 20
  // frame interval. There is a simulated clock drift of 1% in this test, with
  // the capture side producing data slightly faster.
  for (int i = 0; i < 1000; i++) {
    if (i % 20 == 0) {
      echo_detector->AnalyzeRenderAudio(ones);
      echo_detector->AnalyzeCaptureAudio(zeros);
    } else if (i % 20 == 10) {
      echo_detector->AnalyzeRenderAudio(zeros);
      echo_detector->AnalyzeCaptureAudio(ones);
    } else {
      echo_detector->AnalyzeRenderAudio(zeros);
      echo_detector->AnalyzeCaptureAudio(zeros);
    }
    if (i % 100 == 0) {
      // This is causing the simulated clock drift.
      echo_detector->AnalyzeCaptureAudio(zeros);
    }
  }
  // We expect to detect echo with near certain likelihood.
  auto ed_metrics = echo_detector->GetMetrics();
  ASSERT_TRUE(ed_metrics.echo_likelihood);
  EXPECT_NEAR(1.f, ed_metrics.echo_likelihood.value(), 0.01f);
}

}  // namespace webrtc