aboutsummaryrefslogtreecommitdiff
path: root/modules/congestion_controller/goog_cc/send_side_bandwidth_estimation.cc
blob: 31024662ffe5c8719c7dbaec70db9cf928018d88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/congestion_controller/goog_cc/send_side_bandwidth_estimation.h"

#include <algorithm>
#include <cstdint>
#include <cstdio>
#include <limits>
#include <memory>
#include <string>
#include <utility>

#include "absl/strings/match.h"
#include "absl/types/optional.h"
#include "api/field_trials_view.h"
#include "api/network_state_predictor.h"
#include "api/rtc_event_log/rtc_event_log.h"
#include "api/transport/network_types.h"
#include "api/units/data_rate.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "logging/rtc_event_log/events/rtc_event_bwe_update_loss_based.h"
#include "modules/congestion_controller/goog_cc/loss_based_bwe_v2.h"
#include "modules/remote_bitrate_estimator/include/bwe_defines.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/field_trial_parser.h"
#include "rtc_base/logging.h"
#include "system_wrappers/include/field_trial.h"
#include "system_wrappers/include/metrics.h"

namespace webrtc {
namespace {
constexpr TimeDelta kBweIncreaseInterval = TimeDelta::Millis(1000);
constexpr TimeDelta kBweDecreaseInterval = TimeDelta::Millis(300);
constexpr TimeDelta kStartPhase = TimeDelta::Millis(2000);
constexpr TimeDelta kBweConverganceTime = TimeDelta::Millis(20000);
constexpr int kLimitNumPackets = 20;
constexpr DataRate kDefaultMaxBitrate = DataRate::BitsPerSec(1000000000);
constexpr TimeDelta kLowBitrateLogPeriod = TimeDelta::Millis(10000);
constexpr TimeDelta kRtcEventLogPeriod = TimeDelta::Millis(5000);
// Expecting that RTCP feedback is sent uniformly within [0.5, 1.5]s intervals.
constexpr TimeDelta kMaxRtcpFeedbackInterval = TimeDelta::Millis(5000);

constexpr float kDefaultLowLossThreshold = 0.02f;
constexpr float kDefaultHighLossThreshold = 0.1f;
constexpr DataRate kDefaultBitrateThreshold = DataRate::Zero();

struct UmaRampUpMetric {
  const char* metric_name;
  int bitrate_kbps;
};

const UmaRampUpMetric kUmaRampupMetrics[] = {
    {"WebRTC.BWE.RampUpTimeTo500kbpsInMs", 500},
    {"WebRTC.BWE.RampUpTimeTo1000kbpsInMs", 1000},
    {"WebRTC.BWE.RampUpTimeTo2000kbpsInMs", 2000}};
const size_t kNumUmaRampupMetrics =
    sizeof(kUmaRampupMetrics) / sizeof(kUmaRampupMetrics[0]);

const char kBweLosExperiment[] = "WebRTC-BweLossExperiment";

bool BweLossExperimentIsEnabled() {
  std::string experiment_string =
      webrtc::field_trial::FindFullName(kBweLosExperiment);
  // The experiment is enabled iff the field trial string begins with "Enabled".
  return absl::StartsWith(experiment_string, "Enabled");
}

bool ReadBweLossExperimentParameters(float* low_loss_threshold,
                                     float* high_loss_threshold,
                                     uint32_t* bitrate_threshold_kbps) {
  RTC_DCHECK(low_loss_threshold);
  RTC_DCHECK(high_loss_threshold);
  RTC_DCHECK(bitrate_threshold_kbps);
  std::string experiment_string =
      webrtc::field_trial::FindFullName(kBweLosExperiment);
  int parsed_values =
      sscanf(experiment_string.c_str(), "Enabled-%f,%f,%u", low_loss_threshold,
             high_loss_threshold, bitrate_threshold_kbps);
  if (parsed_values == 3) {
    RTC_CHECK_GT(*low_loss_threshold, 0.0f)
        << "Loss threshold must be greater than 0.";
    RTC_CHECK_LE(*low_loss_threshold, 1.0f)
        << "Loss threshold must be less than or equal to 1.";
    RTC_CHECK_GT(*high_loss_threshold, 0.0f)
        << "Loss threshold must be greater than 0.";
    RTC_CHECK_LE(*high_loss_threshold, 1.0f)
        << "Loss threshold must be less than or equal to 1.";
    RTC_CHECK_LE(*low_loss_threshold, *high_loss_threshold)
        << "The low loss threshold must be less than or equal to the high loss "
           "threshold.";
    RTC_CHECK_GE(*bitrate_threshold_kbps, 0)
        << "Bitrate threshold can't be negative.";
    RTC_CHECK_LT(*bitrate_threshold_kbps,
                 std::numeric_limits<int>::max() / 1000)
        << "Bitrate must be smaller enough to avoid overflows.";
    return true;
  }
  RTC_LOG(LS_WARNING) << "Failed to parse parameters for BweLossExperiment "
                         "experiment from field trial string. Using default.";
  *low_loss_threshold = kDefaultLowLossThreshold;
  *high_loss_threshold = kDefaultHighLossThreshold;
  *bitrate_threshold_kbps = kDefaultBitrateThreshold.kbps();
  return false;
}
}  // namespace

LinkCapacityTracker::LinkCapacityTracker()
    : tracking_rate("rate", TimeDelta::Seconds(10)) {
  ParseFieldTrial({&tracking_rate},
                  field_trial::FindFullName("WebRTC-Bwe-LinkCapacity"));
}

LinkCapacityTracker::~LinkCapacityTracker() {}

void LinkCapacityTracker::UpdateDelayBasedEstimate(
    Timestamp at_time,
    DataRate delay_based_bitrate) {
  if (delay_based_bitrate < last_delay_based_estimate_) {
    capacity_estimate_bps_ =
        std::min(capacity_estimate_bps_, delay_based_bitrate.bps<double>());
    last_link_capacity_update_ = at_time;
  }
  last_delay_based_estimate_ = delay_based_bitrate;
}

void LinkCapacityTracker::OnStartingRate(DataRate start_rate) {
  if (last_link_capacity_update_.IsInfinite())
    capacity_estimate_bps_ = start_rate.bps<double>();
}

void LinkCapacityTracker::OnRateUpdate(absl::optional<DataRate> acknowledged,
                                       DataRate target,
                                       Timestamp at_time) {
  if (!acknowledged)
    return;
  DataRate acknowledged_target = std::min(*acknowledged, target);
  if (acknowledged_target.bps() > capacity_estimate_bps_) {
    TimeDelta delta = at_time - last_link_capacity_update_;
    double alpha = delta.IsFinite() ? exp(-(delta / tracking_rate.Get())) : 0;
    capacity_estimate_bps_ = alpha * capacity_estimate_bps_ +
                             (1 - alpha) * acknowledged_target.bps<double>();
  }
  last_link_capacity_update_ = at_time;
}

void LinkCapacityTracker::OnRttBackoff(DataRate backoff_rate,
                                       Timestamp at_time) {
  capacity_estimate_bps_ =
      std::min(capacity_estimate_bps_, backoff_rate.bps<double>());
  last_link_capacity_update_ = at_time;
}

DataRate LinkCapacityTracker::estimate() const {
  return DataRate::BitsPerSec(capacity_estimate_bps_);
}

RttBasedBackoff::RttBasedBackoff(const FieldTrialsView* key_value_config)
    : disabled_("Disabled"),
      configured_limit_("limit", TimeDelta::Seconds(3)),
      drop_fraction_("fraction", 0.8),
      drop_interval_("interval", TimeDelta::Seconds(1)),
      bandwidth_floor_("floor", DataRate::KilobitsPerSec(5)),
      rtt_limit_(TimeDelta::PlusInfinity()),
      // By initializing this to plus infinity, we make sure that we never
      // trigger rtt backoff unless packet feedback is enabled.
      last_propagation_rtt_update_(Timestamp::PlusInfinity()),
      last_propagation_rtt_(TimeDelta::Zero()),
      last_packet_sent_(Timestamp::MinusInfinity()) {
  ParseFieldTrial({&disabled_, &configured_limit_, &drop_fraction_,
                   &drop_interval_, &bandwidth_floor_},
                  key_value_config->Lookup("WebRTC-Bwe-MaxRttLimit"));
  if (!disabled_) {
    rtt_limit_ = configured_limit_.Get();
  }
}

void RttBasedBackoff::UpdatePropagationRtt(Timestamp at_time,
                                           TimeDelta propagation_rtt) {
  last_propagation_rtt_update_ = at_time;
  last_propagation_rtt_ = propagation_rtt;
}

bool RttBasedBackoff::IsRttAboveLimit() const {
  return CorrectedRtt() > rtt_limit_;
}

TimeDelta RttBasedBackoff::CorrectedRtt() const {
  // Avoid timeout when no packets are being sent.
  TimeDelta timeout_correction = std::max(
      last_packet_sent_ - last_propagation_rtt_update_, TimeDelta::Zero());
  return timeout_correction + last_propagation_rtt_;
}

RttBasedBackoff::~RttBasedBackoff() = default;

SendSideBandwidthEstimation::SendSideBandwidthEstimation(
    const FieldTrialsView* key_value_config,
    RtcEventLog* event_log)
    : rtt_backoff_(key_value_config),
      lost_packets_since_last_loss_update_(0),
      expected_packets_since_last_loss_update_(0),
      current_target_(DataRate::Zero()),
      last_logged_target_(DataRate::Zero()),
      min_bitrate_configured_(kCongestionControllerMinBitrate),
      max_bitrate_configured_(kDefaultMaxBitrate),
      last_low_bitrate_log_(Timestamp::MinusInfinity()),
      has_decreased_since_last_fraction_loss_(false),
      last_loss_feedback_(Timestamp::MinusInfinity()),
      last_loss_packet_report_(Timestamp::MinusInfinity()),
      last_fraction_loss_(0),
      last_logged_fraction_loss_(0),
      last_round_trip_time_(TimeDelta::Zero()),
      receiver_limit_(DataRate::PlusInfinity()),
      delay_based_limit_(DataRate::PlusInfinity()),
      time_last_decrease_(Timestamp::MinusInfinity()),
      first_report_time_(Timestamp::MinusInfinity()),
      initially_lost_packets_(0),
      bitrate_at_2_seconds_(DataRate::Zero()),
      uma_update_state_(kNoUpdate),
      uma_rtt_state_(kNoUpdate),
      rampup_uma_stats_updated_(kNumUmaRampupMetrics, false),
      event_log_(event_log),
      last_rtc_event_log_(Timestamp::MinusInfinity()),
      low_loss_threshold_(kDefaultLowLossThreshold),
      high_loss_threshold_(kDefaultHighLossThreshold),
      bitrate_threshold_(kDefaultBitrateThreshold),
      loss_based_bandwidth_estimator_v1_(key_value_config),
      loss_based_bandwidth_estimator_v2_(key_value_config),
      loss_based_state_(LossBasedState::kDelayBasedEstimate),
      disable_receiver_limit_caps_only_("Disabled") {
  RTC_DCHECK(event_log);
  if (BweLossExperimentIsEnabled()) {
    uint32_t bitrate_threshold_kbps;
    if (ReadBweLossExperimentParameters(&low_loss_threshold_,
                                        &high_loss_threshold_,
                                        &bitrate_threshold_kbps)) {
      RTC_LOG(LS_INFO) << "Enabled BweLossExperiment with parameters "
                       << low_loss_threshold_ << ", " << high_loss_threshold_
                       << ", " << bitrate_threshold_kbps;
      bitrate_threshold_ = DataRate::KilobitsPerSec(bitrate_threshold_kbps);
    }
  }
  ParseFieldTrial({&disable_receiver_limit_caps_only_},
                  key_value_config->Lookup("WebRTC-Bwe-ReceiverLimitCapsOnly"));
  if (LossBasedBandwidthEstimatorV2Enabled()) {
    loss_based_bandwidth_estimator_v2_.SetMinMaxBitrate(
        min_bitrate_configured_, max_bitrate_configured_);
  }
}

SendSideBandwidthEstimation::~SendSideBandwidthEstimation() {}

void SendSideBandwidthEstimation::OnRouteChange() {
  lost_packets_since_last_loss_update_ = 0;
  expected_packets_since_last_loss_update_ = 0;
  current_target_ = DataRate::Zero();
  min_bitrate_configured_ = kCongestionControllerMinBitrate;
  max_bitrate_configured_ = kDefaultMaxBitrate;
  last_low_bitrate_log_ = Timestamp::MinusInfinity();
  has_decreased_since_last_fraction_loss_ = false;
  last_loss_feedback_ = Timestamp::MinusInfinity();
  last_loss_packet_report_ = Timestamp::MinusInfinity();
  last_fraction_loss_ = 0;
  last_logged_fraction_loss_ = 0;
  last_round_trip_time_ = TimeDelta::Zero();
  receiver_limit_ = DataRate::PlusInfinity();
  delay_based_limit_ = DataRate::PlusInfinity();
  time_last_decrease_ = Timestamp::MinusInfinity();
  first_report_time_ = Timestamp::MinusInfinity();
  initially_lost_packets_ = 0;
  bitrate_at_2_seconds_ = DataRate::Zero();
  uma_update_state_ = kNoUpdate;
  uma_rtt_state_ = kNoUpdate;
  last_rtc_event_log_ = Timestamp::MinusInfinity();
}

void SendSideBandwidthEstimation::SetBitrates(
    absl::optional<DataRate> send_bitrate,
    DataRate min_bitrate,
    DataRate max_bitrate,
    Timestamp at_time) {
  SetMinMaxBitrate(min_bitrate, max_bitrate);
  if (send_bitrate) {
    link_capacity_.OnStartingRate(*send_bitrate);
    SetSendBitrate(*send_bitrate, at_time);
  }
}

void SendSideBandwidthEstimation::SetSendBitrate(DataRate bitrate,
                                                 Timestamp at_time) {
  RTC_DCHECK_GT(bitrate, DataRate::Zero());
  // Reset to avoid being capped by the estimate.
  delay_based_limit_ = DataRate::PlusInfinity();
  UpdateTargetBitrate(bitrate, at_time);
  // Clear last sent bitrate history so the new value can be used directly
  // and not capped.
  min_bitrate_history_.clear();
}

void SendSideBandwidthEstimation::SetMinMaxBitrate(DataRate min_bitrate,
                                                   DataRate max_bitrate) {
  min_bitrate_configured_ =
      std::max(min_bitrate, kCongestionControllerMinBitrate);
  if (max_bitrate > DataRate::Zero() && max_bitrate.IsFinite()) {
    max_bitrate_configured_ = std::max(min_bitrate_configured_, max_bitrate);
  } else {
    max_bitrate_configured_ = kDefaultMaxBitrate;
  }
  loss_based_bandwidth_estimator_v2_.SetMinMaxBitrate(min_bitrate_configured_,
                                                      max_bitrate_configured_);
}

int SendSideBandwidthEstimation::GetMinBitrate() const {
  return min_bitrate_configured_.bps<int>();
}

DataRate SendSideBandwidthEstimation::target_rate() const {
  DataRate target = current_target_;
  if (!disable_receiver_limit_caps_only_)
    target = std::min(target, receiver_limit_);
  return std::max(min_bitrate_configured_, target);
}

LossBasedState SendSideBandwidthEstimation::loss_based_state() const {
  return loss_based_state_;
}

bool SendSideBandwidthEstimation::IsRttAboveLimit() const {
  return rtt_backoff_.IsRttAboveLimit();
}

DataRate SendSideBandwidthEstimation::GetEstimatedLinkCapacity() const {
  return link_capacity_.estimate();
}

void SendSideBandwidthEstimation::UpdateReceiverEstimate(Timestamp at_time,
                                                         DataRate bandwidth) {
  // TODO(srte): Ensure caller passes PlusInfinity, not zero, to represent no
  // limitation.
  receiver_limit_ = bandwidth.IsZero() ? DataRate::PlusInfinity() : bandwidth;
  ApplyTargetLimits(at_time);
}

void SendSideBandwidthEstimation::UpdateDelayBasedEstimate(Timestamp at_time,
                                                           DataRate bitrate) {
  link_capacity_.UpdateDelayBasedEstimate(at_time, bitrate);
  // TODO(srte): Ensure caller passes PlusInfinity, not zero, to represent no
  // limitation.
  delay_based_limit_ = bitrate.IsZero() ? DataRate::PlusInfinity() : bitrate;
  ApplyTargetLimits(at_time);
}

void SendSideBandwidthEstimation::SetAcknowledgedRate(
    absl::optional<DataRate> acknowledged_rate,
    Timestamp at_time) {
  acknowledged_rate_ = acknowledged_rate;
  if (!acknowledged_rate.has_value()) {
    return;
  }
  if (LossBasedBandwidthEstimatorV1Enabled()) {
    loss_based_bandwidth_estimator_v1_.UpdateAcknowledgedBitrate(
        *acknowledged_rate, at_time);
  }
  if (LossBasedBandwidthEstimatorV2Enabled()) {
    loss_based_bandwidth_estimator_v2_.SetAcknowledgedBitrate(
        *acknowledged_rate);
  }
}

void SendSideBandwidthEstimation::UpdateLossBasedEstimator(
    const TransportPacketsFeedback& report,
    BandwidthUsage delay_detector_state,
    absl::optional<DataRate> probe_bitrate,
    bool in_alr) {
  if (LossBasedBandwidthEstimatorV1Enabled()) {
    loss_based_bandwidth_estimator_v1_.UpdateLossStatistics(
        report.packet_feedbacks, report.feedback_time);
  }
  if (LossBasedBandwidthEstimatorV2Enabled()) {
    loss_based_bandwidth_estimator_v2_.UpdateBandwidthEstimate(
        report.packet_feedbacks, delay_based_limit_, delay_detector_state,
        probe_bitrate, in_alr);
    UpdateEstimate(report.feedback_time);
  }
}

void SendSideBandwidthEstimation::UpdatePacketsLost(int64_t packets_lost,
                                                    int64_t number_of_packets,
                                                    Timestamp at_time) {
  last_loss_feedback_ = at_time;
  if (first_report_time_.IsInfinite())
    first_report_time_ = at_time;

  // Check sequence number diff and weight loss report
  if (number_of_packets > 0) {
    int64_t expected =
        expected_packets_since_last_loss_update_ + number_of_packets;

    // Don't generate a loss rate until it can be based on enough packets.
    if (expected < kLimitNumPackets) {
      // Accumulate reports.
      expected_packets_since_last_loss_update_ = expected;
      lost_packets_since_last_loss_update_ += packets_lost;
      return;
    }

    has_decreased_since_last_fraction_loss_ = false;
    int64_t lost_q8 =
        std::max<int64_t>(lost_packets_since_last_loss_update_ + packets_lost,
                          0)
        << 8;
    last_fraction_loss_ = std::min<int>(lost_q8 / expected, 255);

    // Reset accumulators.
    lost_packets_since_last_loss_update_ = 0;
    expected_packets_since_last_loss_update_ = 0;
    last_loss_packet_report_ = at_time;
    UpdateEstimate(at_time);
  }

  UpdateUmaStatsPacketsLost(at_time, packets_lost);
}

void SendSideBandwidthEstimation::UpdateUmaStatsPacketsLost(Timestamp at_time,
                                                            int packets_lost) {
  DataRate bitrate_kbps =
      DataRate::KilobitsPerSec((current_target_.bps() + 500) / 1000);
  for (size_t i = 0; i < kNumUmaRampupMetrics; ++i) {
    if (!rampup_uma_stats_updated_[i] &&
        bitrate_kbps.kbps() >= kUmaRampupMetrics[i].bitrate_kbps) {
      RTC_HISTOGRAMS_COUNTS_100000(i, kUmaRampupMetrics[i].metric_name,
                                   (at_time - first_report_time_).ms());
      rampup_uma_stats_updated_[i] = true;
    }
  }
  if (IsInStartPhase(at_time)) {
    initially_lost_packets_ += packets_lost;
  } else if (uma_update_state_ == kNoUpdate) {
    uma_update_state_ = kFirstDone;
    bitrate_at_2_seconds_ = bitrate_kbps;
    RTC_HISTOGRAM_COUNTS("WebRTC.BWE.InitiallyLostPackets",
                         initially_lost_packets_, 0, 100, 50);
    RTC_HISTOGRAM_COUNTS("WebRTC.BWE.InitialBandwidthEstimate",
                         bitrate_at_2_seconds_.kbps(), 0, 2000, 50);
  } else if (uma_update_state_ == kFirstDone &&
             at_time - first_report_time_ >= kBweConverganceTime) {
    uma_update_state_ = kDone;
    int bitrate_diff_kbps = std::max(
        bitrate_at_2_seconds_.kbps<int>() - bitrate_kbps.kbps<int>(), 0);
    RTC_HISTOGRAM_COUNTS("WebRTC.BWE.InitialVsConvergedDiff", bitrate_diff_kbps,
                         0, 2000, 50);
  }
}

void SendSideBandwidthEstimation::UpdateRtt(TimeDelta rtt, Timestamp at_time) {
  // Update RTT if we were able to compute an RTT based on this RTCP.
  // FlexFEC doesn't send RTCP SR, which means we won't be able to compute RTT.
  if (rtt > TimeDelta::Zero())
    last_round_trip_time_ = rtt;

  if (!IsInStartPhase(at_time) && uma_rtt_state_ == kNoUpdate) {
    uma_rtt_state_ = kDone;
    RTC_HISTOGRAM_COUNTS("WebRTC.BWE.InitialRtt", rtt.ms<int>(), 0, 2000, 50);
  }
}

void SendSideBandwidthEstimation::UpdateEstimate(Timestamp at_time) {
  if (rtt_backoff_.IsRttAboveLimit()) {
    if (at_time - time_last_decrease_ >= rtt_backoff_.drop_interval_ &&
        current_target_ > rtt_backoff_.bandwidth_floor_) {
      time_last_decrease_ = at_time;
      DataRate new_bitrate =
          std::max(current_target_ * rtt_backoff_.drop_fraction_,
                   rtt_backoff_.bandwidth_floor_.Get());
      link_capacity_.OnRttBackoff(new_bitrate, at_time);
      UpdateTargetBitrate(new_bitrate, at_time);
      return;
    }
    // TODO(srte): This is likely redundant in most cases.
    ApplyTargetLimits(at_time);
    return;
  }

  // We trust the REMB and/or delay-based estimate during the first 2 seconds if
  // we haven't had any packet loss reported, to allow startup bitrate probing.
  if (last_fraction_loss_ == 0 && IsInStartPhase(at_time) &&
      !loss_based_bandwidth_estimator_v2_.ReadyToUseInStartPhase()) {
    DataRate new_bitrate = current_target_;
    // TODO(srte): We should not allow the new_bitrate to be larger than the
    // receiver limit here.
    if (receiver_limit_.IsFinite())
      new_bitrate = std::max(receiver_limit_, new_bitrate);
    if (delay_based_limit_.IsFinite())
      new_bitrate = std::max(delay_based_limit_, new_bitrate);
    if (LossBasedBandwidthEstimatorV1Enabled()) {
      loss_based_bandwidth_estimator_v1_.Initialize(new_bitrate);
    }

    if (new_bitrate != current_target_) {
      min_bitrate_history_.clear();
      if (LossBasedBandwidthEstimatorV1Enabled()) {
        min_bitrate_history_.push_back(std::make_pair(at_time, new_bitrate));
      } else {
        min_bitrate_history_.push_back(
            std::make_pair(at_time, current_target_));
      }
      UpdateTargetBitrate(new_bitrate, at_time);
      return;
    }
  }
  UpdateMinHistory(at_time);
  if (last_loss_packet_report_.IsInfinite()) {
    // No feedback received.
    // TODO(srte): This is likely redundant in most cases.
    ApplyTargetLimits(at_time);
    return;
  }

  if (LossBasedBandwidthEstimatorV1ReadyForUse()) {
    DataRate new_bitrate = loss_based_bandwidth_estimator_v1_.Update(
        at_time, min_bitrate_history_.front().second, delay_based_limit_,
        last_round_trip_time_);
    UpdateTargetBitrate(new_bitrate, at_time);
    return;
  }

  if (LossBasedBandwidthEstimatorV2ReadyForUse()) {
    LossBasedBweV2::Result result =
        loss_based_bandwidth_estimator_v2_.GetLossBasedResult();
    loss_based_state_ = result.state;
    UpdateTargetBitrate(result.bandwidth_estimate, at_time);
    return;
  }

  TimeDelta time_since_loss_packet_report = at_time - last_loss_packet_report_;
  if (time_since_loss_packet_report < 1.2 * kMaxRtcpFeedbackInterval) {
    // We only care about loss above a given bitrate threshold.
    float loss = last_fraction_loss_ / 256.0f;
    // We only make decisions based on loss when the bitrate is above a
    // threshold. This is a crude way of handling loss which is uncorrelated
    // to congestion.
    if (current_target_ < bitrate_threshold_ || loss <= low_loss_threshold_) {
      // Loss < 2%: Increase rate by 8% of the min bitrate in the last
      // kBweIncreaseInterval.
      // Note that by remembering the bitrate over the last second one can
      // rampup up one second faster than if only allowed to start ramping
      // at 8% per second rate now. E.g.:
      //   If sending a constant 100kbps it can rampup immediately to 108kbps
      //   whenever a receiver report is received with lower packet loss.
      //   If instead one would do: current_bitrate_ *= 1.08^(delta time),
      //   it would take over one second since the lower packet loss to achieve
      //   108kbps.
      DataRate new_bitrate = DataRate::BitsPerSec(
          min_bitrate_history_.front().second.bps() * 1.08 + 0.5);

      // Add 1 kbps extra, just to make sure that we do not get stuck
      // (gives a little extra increase at low rates, negligible at higher
      // rates).
      new_bitrate += DataRate::BitsPerSec(1000);
      UpdateTargetBitrate(new_bitrate, at_time);
      return;
    } else if (current_target_ > bitrate_threshold_) {
      if (loss <= high_loss_threshold_) {
        // Loss between 2% - 10%: Do nothing.
      } else {
        // Loss > 10%: Limit the rate decreases to once a kBweDecreaseInterval
        // + rtt.
        if (!has_decreased_since_last_fraction_loss_ &&
            (at_time - time_last_decrease_) >=
                (kBweDecreaseInterval + last_round_trip_time_)) {
          time_last_decrease_ = at_time;

          // Reduce rate:
          //   newRate = rate * (1 - 0.5*lossRate);
          //   where packetLoss = 256*lossRate;
          DataRate new_bitrate = DataRate::BitsPerSec(
              (current_target_.bps() *
               static_cast<double>(512 - last_fraction_loss_)) /
              512.0);
          has_decreased_since_last_fraction_loss_ = true;
          UpdateTargetBitrate(new_bitrate, at_time);
          return;
        }
      }
    }
  }
  // TODO(srte): This is likely redundant in most cases.
  ApplyTargetLimits(at_time);
}

void SendSideBandwidthEstimation::UpdatePropagationRtt(
    Timestamp at_time,
    TimeDelta propagation_rtt) {
  rtt_backoff_.UpdatePropagationRtt(at_time, propagation_rtt);
}

void SendSideBandwidthEstimation::OnSentPacket(const SentPacket& sent_packet) {
  // Only feedback-triggering packets will be reported here.
  rtt_backoff_.last_packet_sent_ = sent_packet.send_time;
}

bool SendSideBandwidthEstimation::IsInStartPhase(Timestamp at_time) const {
  return first_report_time_.IsInfinite() ||
         at_time - first_report_time_ < kStartPhase;
}

void SendSideBandwidthEstimation::UpdateMinHistory(Timestamp at_time) {
  // Remove old data points from history.
  // Since history precision is in ms, add one so it is able to increase
  // bitrate if it is off by as little as 0.5ms.
  while (!min_bitrate_history_.empty() &&
         at_time - min_bitrate_history_.front().first + TimeDelta::Millis(1) >
             kBweIncreaseInterval) {
    min_bitrate_history_.pop_front();
  }

  // Typical minimum sliding-window algorithm: Pop values higher than current
  // bitrate before pushing it.
  while (!min_bitrate_history_.empty() &&
         current_target_ <= min_bitrate_history_.back().second) {
    min_bitrate_history_.pop_back();
  }

  min_bitrate_history_.push_back(std::make_pair(at_time, current_target_));
}

DataRate SendSideBandwidthEstimation::GetUpperLimit() const {
  DataRate upper_limit = delay_based_limit_;
  if (disable_receiver_limit_caps_only_)
    upper_limit = std::min(upper_limit, receiver_limit_);
  return std::min(upper_limit, max_bitrate_configured_);
}

void SendSideBandwidthEstimation::MaybeLogLowBitrateWarning(DataRate bitrate,
                                                            Timestamp at_time) {
  if (at_time - last_low_bitrate_log_ > kLowBitrateLogPeriod) {
    RTC_LOG(LS_WARNING) << "Estimated available bandwidth " << ToString(bitrate)
                        << " is below configured min bitrate "
                        << ToString(min_bitrate_configured_) << ".";
    last_low_bitrate_log_ = at_time;
  }
}

void SendSideBandwidthEstimation::MaybeLogLossBasedEvent(Timestamp at_time) {
  if (current_target_ != last_logged_target_ ||
      last_fraction_loss_ != last_logged_fraction_loss_ ||
      at_time - last_rtc_event_log_ > kRtcEventLogPeriod) {
    event_log_->Log(std::make_unique<RtcEventBweUpdateLossBased>(
        current_target_.bps(), last_fraction_loss_,
        expected_packets_since_last_loss_update_));
    last_logged_fraction_loss_ = last_fraction_loss_;
    last_logged_target_ = current_target_;
    last_rtc_event_log_ = at_time;
  }
}

void SendSideBandwidthEstimation::UpdateTargetBitrate(DataRate new_bitrate,
                                                      Timestamp at_time) {
  new_bitrate = std::min(new_bitrate, GetUpperLimit());
  if (new_bitrate < min_bitrate_configured_) {
    MaybeLogLowBitrateWarning(new_bitrate, at_time);
    new_bitrate = min_bitrate_configured_;
  }
  current_target_ = new_bitrate;
  MaybeLogLossBasedEvent(at_time);
  link_capacity_.OnRateUpdate(acknowledged_rate_, current_target_, at_time);
}

void SendSideBandwidthEstimation::ApplyTargetLimits(Timestamp at_time) {
  UpdateTargetBitrate(current_target_, at_time);
}

bool SendSideBandwidthEstimation::LossBasedBandwidthEstimatorV1Enabled() const {
  return loss_based_bandwidth_estimator_v1_.Enabled() &&
         !LossBasedBandwidthEstimatorV2Enabled();
}

bool SendSideBandwidthEstimation::LossBasedBandwidthEstimatorV1ReadyForUse()
    const {
  return LossBasedBandwidthEstimatorV1Enabled() &&
         loss_based_bandwidth_estimator_v1_.InUse();
}

bool SendSideBandwidthEstimation::LossBasedBandwidthEstimatorV2Enabled() const {
  return loss_based_bandwidth_estimator_v2_.IsEnabled();
}

bool SendSideBandwidthEstimation::LossBasedBandwidthEstimatorV2ReadyForUse()
    const {
  return LossBasedBandwidthEstimatorV2Enabled() &&
         loss_based_bandwidth_estimator_v2_.IsReady();
}

}  // namespace webrtc