aboutsummaryrefslogtreecommitdiff
path: root/modules/congestion_controller/pcc/bitrate_controller_unittest.cc
blob: 957d99b1ded8e62804a4814a94668cc0c8d6af10 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
/*
 *  Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/congestion_controller/pcc/bitrate_controller.h"

#include <memory>
#include <utility>

#include "modules/congestion_controller/pcc/monitor_interval.h"
#include "test/gmock.h"
#include "test/gtest.h"

namespace webrtc {
namespace pcc {
namespace test {
namespace {
constexpr double kInitialConversionFactor = 1;
constexpr double kInitialDynamicBoundary = 0.05;
constexpr double kDynamicBoundaryIncrement = 0.1;

constexpr double kDelayGradientCoefficient = 900;
constexpr double kLossCoefficient = 11.35;
constexpr double kThroughputCoefficient = 500 * 1000;
constexpr double kThroughputPower = 0.99;
constexpr double kDelayGradientThreshold = 0.01;
constexpr double kDelayGradientNegativeBound = 10;

const DataRate kTargetSendingRate = DataRate::KilobitsPerSec(300);
const double kEpsilon = 0.05;
const Timestamp kStartTime = Timestamp::Micros(0);
const TimeDelta kPacketsDelta = TimeDelta::Millis(1);
const TimeDelta kIntervalDuration = TimeDelta::Millis(1000);
const TimeDelta kDefaultRtt = TimeDelta::Millis(1000);
const DataSize kDefaultDataSize = DataSize::Bytes(100);

std::vector<PacketResult> CreatePacketResults(
    const std::vector<Timestamp>& packets_send_times,
    const std::vector<Timestamp>& packets_received_times = {},
    const std::vector<DataSize>& packets_sizes = {}) {
  std::vector<PacketResult> packet_results;
  PacketResult packet_result;
  SentPacket sent_packet;
  for (size_t i = 0; i < packets_send_times.size(); ++i) {
    sent_packet.send_time = packets_send_times[i];
    if (packets_sizes.empty()) {
      sent_packet.size = kDefaultDataSize;
    } else {
      sent_packet.size = packets_sizes[i];
    }
    packet_result.sent_packet = sent_packet;
    if (packets_received_times.empty()) {
      packet_result.receive_time = packets_send_times[i] + kDefaultRtt;
    } else {
      packet_result.receive_time = packets_received_times[i];
    }
    packet_results.push_back(packet_result);
  }
  return packet_results;
}

class MockUtilityFunction : public PccUtilityFunctionInterface {
 public:
  MOCK_METHOD(double,
              Compute,
              (const PccMonitorInterval& monitor_interval),
              (const, override));
};

}  // namespace

TEST(PccBitrateControllerTest, IncreaseRateWhenNoChangesForTestBitrates) {
  PccBitrateController bitrate_controller(
      kInitialConversionFactor, kInitialDynamicBoundary,
      kDynamicBoundaryIncrement, kDelayGradientCoefficient, kLossCoefficient,
      kThroughputCoefficient, kThroughputPower, kDelayGradientThreshold,
      kDelayGradientNegativeBound);
  VivaceUtilityFunction utility_function(
      kDelayGradientCoefficient, kLossCoefficient, kThroughputCoefficient,
      kThroughputPower, kDelayGradientThreshold, kDelayGradientNegativeBound);
  std::vector<PccMonitorInterval> monitor_block{
      PccMonitorInterval(kTargetSendingRate * (1 + kEpsilon), kStartTime,
                         kIntervalDuration),
      PccMonitorInterval(kTargetSendingRate * (1 - kEpsilon),
                         kStartTime + kIntervalDuration, kIntervalDuration)};
  monitor_block[0].OnPacketsFeedback(
      CreatePacketResults({kStartTime + kPacketsDelta,
                           kStartTime + kIntervalDuration + kPacketsDelta,
                           kStartTime + 3 * kIntervalDuration},
                          {}, {}));
  monitor_block[1].OnPacketsFeedback(
      CreatePacketResults({kStartTime + kPacketsDelta,
                           kStartTime + kIntervalDuration + kPacketsDelta,
                           kStartTime + 3 * kIntervalDuration},
                          {}, {}));
  // For both of the monitor intervals there were no change in rtt gradient
  // and in packet loss. Since the only difference is in the sending rate,
  // the higher sending rate should be chosen by congestion controller.
  EXPECT_GT(bitrate_controller
                .ComputeRateUpdateForOnlineLearningMode(monitor_block,
                                                        kTargetSendingRate)
                .bps(),
            kTargetSendingRate.bps());
}

TEST(PccBitrateControllerTest, NoChangesWhenUtilityFunctionDoesntChange) {
  std::unique_ptr<MockUtilityFunction> mock_utility_function =
      std::make_unique<MockUtilityFunction>();
  EXPECT_CALL(*mock_utility_function, Compute(::testing::_))
      .Times(2)
      .WillOnce(::testing::Return(100))
      .WillOnce(::testing::Return(100));

  PccBitrateController bitrate_controller(
      kInitialConversionFactor, kInitialDynamicBoundary,
      kDynamicBoundaryIncrement, std::move(mock_utility_function));
  std::vector<PccMonitorInterval> monitor_block{
      PccMonitorInterval(kTargetSendingRate * (1 + kEpsilon), kStartTime,
                         kIntervalDuration),
      PccMonitorInterval(kTargetSendingRate * (1 - kEpsilon),
                         kStartTime + kIntervalDuration, kIntervalDuration)};
  // To complete collecting feedback within monitor intervals.
  monitor_block[0].OnPacketsFeedback(
      CreatePacketResults({kStartTime + 3 * kIntervalDuration}, {}, {}));
  monitor_block[1].OnPacketsFeedback(
      CreatePacketResults({kStartTime + 3 * kIntervalDuration}, {}, {}));
  // Because we don't have any packets inside of monitor intervals, utility
  // function should be zero for both of them and the sending rate should not
  // change.
  EXPECT_EQ(bitrate_controller
                .ComputeRateUpdateForOnlineLearningMode(monitor_block,
                                                        kTargetSendingRate)
                .bps(),
            kTargetSendingRate.bps());
}

TEST(PccBitrateControllerTest, NoBoundaryWhenSmallGradient) {
  std::unique_ptr<MockUtilityFunction> mock_utility_function =
      std::make_unique<MockUtilityFunction>();
  constexpr double kFirstMonitorIntervalUtility = 0;
  const double kSecondMonitorIntervalUtility =
      2 * kTargetSendingRate.bps() * kEpsilon;

  EXPECT_CALL(*mock_utility_function, Compute(::testing::_))
      .Times(2)
      .WillOnce(::testing::Return(kFirstMonitorIntervalUtility))
      .WillOnce(::testing::Return(kSecondMonitorIntervalUtility));

  PccBitrateController bitrate_controller(
      kInitialConversionFactor, kInitialDynamicBoundary,
      kDynamicBoundaryIncrement, std::move(mock_utility_function));
  std::vector<PccMonitorInterval> monitor_block{
      PccMonitorInterval(kTargetSendingRate * (1 + kEpsilon), kStartTime,
                         kIntervalDuration),
      PccMonitorInterval(kTargetSendingRate * (1 - kEpsilon),
                         kStartTime + kIntervalDuration, kIntervalDuration)};
  // To complete collecting feedback within monitor intervals.
  monitor_block[0].OnPacketsFeedback(
      CreatePacketResults({kStartTime + 3 * kIntervalDuration}, {}, {}));
  monitor_block[1].OnPacketsFeedback(
      CreatePacketResults({kStartTime + 3 * kIntervalDuration}, {}, {}));

  double gradient =
      (kFirstMonitorIntervalUtility - kSecondMonitorIntervalUtility) /
      (kTargetSendingRate.bps() * 2 * kEpsilon);
  // When the gradient is small we don't hit the dynamic boundary.
  EXPECT_EQ(bitrate_controller
                .ComputeRateUpdateForOnlineLearningMode(monitor_block,
                                                        kTargetSendingRate)
                .bps(),
            kTargetSendingRate.bps() + kInitialConversionFactor * gradient);
}

TEST(PccBitrateControllerTest, FaceBoundaryWhenLargeGradient) {
  std::unique_ptr<MockUtilityFunction> mock_utility_function =
      std::make_unique<MockUtilityFunction>();
  constexpr double kFirstMonitorIntervalUtility = 0;
  const double kSecondMonitorIntervalUtility =
      10 * kInitialDynamicBoundary * kTargetSendingRate.bps() * 2 *
      kTargetSendingRate.bps() * kEpsilon;

  EXPECT_CALL(*mock_utility_function, Compute(::testing::_))
      .Times(4)
      .WillOnce(::testing::Return(kFirstMonitorIntervalUtility))
      .WillOnce(::testing::Return(kSecondMonitorIntervalUtility))
      .WillOnce(::testing::Return(kFirstMonitorIntervalUtility))
      .WillOnce(::testing::Return(kSecondMonitorIntervalUtility));

  PccBitrateController bitrate_controller(
      kInitialConversionFactor, kInitialDynamicBoundary,
      kDynamicBoundaryIncrement, std::move(mock_utility_function));
  std::vector<PccMonitorInterval> monitor_block{
      PccMonitorInterval(kTargetSendingRate * (1 + kEpsilon), kStartTime,
                         kIntervalDuration),
      PccMonitorInterval(kTargetSendingRate * (1 - kEpsilon),
                         kStartTime + kIntervalDuration, kIntervalDuration)};
  // To complete collecting feedback within monitor intervals.
  monitor_block[0].OnPacketsFeedback(
      CreatePacketResults({kStartTime + 3 * kIntervalDuration}, {}, {}));
  monitor_block[1].OnPacketsFeedback(
      CreatePacketResults({kStartTime + 3 * kIntervalDuration}, {}, {}));
  // The utility function gradient is too big and we hit the dynamic boundary.
  EXPECT_EQ(bitrate_controller.ComputeRateUpdateForOnlineLearningMode(
                monitor_block, kTargetSendingRate),
            kTargetSendingRate * (1 - kInitialDynamicBoundary));
  // For the second time we hit the dynamic boundary in the same direction, the
  // boundary should increase.
  EXPECT_EQ(bitrate_controller
                .ComputeRateUpdateForOnlineLearningMode(monitor_block,
                                                        kTargetSendingRate)
                .bps(),
            kTargetSendingRate.bps() *
                (1 - kInitialDynamicBoundary - kDynamicBoundaryIncrement));
}

TEST(PccBitrateControllerTest, SlowStartMode) {
  std::unique_ptr<MockUtilityFunction> mock_utility_function =
      std::make_unique<MockUtilityFunction>();
  constexpr double kFirstUtilityFunction = 1000;
  EXPECT_CALL(*mock_utility_function, Compute(::testing::_))
      .Times(4)
      // For first 3 calls we expect to stay in the SLOW_START mode and double
      // the sending rate since the utility function increases its value. For
      // the last call utility function decreases its value, this means that
      // we should not double the sending rate and exit SLOW_START mode.
      .WillOnce(::testing::Return(kFirstUtilityFunction))
      .WillOnce(::testing::Return(kFirstUtilityFunction + 1))
      .WillOnce(::testing::Return(kFirstUtilityFunction + 2))
      .WillOnce(::testing::Return(kFirstUtilityFunction + 1));

  PccBitrateController bitrate_controller(
      kInitialConversionFactor, kInitialDynamicBoundary,
      kDynamicBoundaryIncrement, std::move(mock_utility_function));
  std::vector<PccMonitorInterval> monitor_block{PccMonitorInterval(
      2 * kTargetSendingRate, kStartTime, kIntervalDuration)};
  // To complete collecting feedback within monitor intervals.
  monitor_block[0].OnPacketsFeedback(
      CreatePacketResults({kStartTime + 3 * kIntervalDuration}, {}, {}));
  EXPECT_EQ(
      bitrate_controller.ComputeRateUpdateForSlowStartMode(monitor_block[0]),
      kTargetSendingRate * 2);
  EXPECT_EQ(
      bitrate_controller.ComputeRateUpdateForSlowStartMode(monitor_block[0]),
      kTargetSendingRate * 2);
  EXPECT_EQ(
      bitrate_controller.ComputeRateUpdateForSlowStartMode(monitor_block[0]),
      kTargetSendingRate * 2);
  EXPECT_EQ(
      bitrate_controller.ComputeRateUpdateForSlowStartMode(monitor_block[0]),
      absl::nullopt);
}

TEST(PccBitrateControllerTest, StepSizeIncrease) {
  std::unique_ptr<MockUtilityFunction> mock_utility_function =
      std::make_unique<MockUtilityFunction>();
  constexpr double kFirstMiUtilityFunction = 0;
  const double kSecondMiUtilityFunction =
      2 * kTargetSendingRate.bps() * kEpsilon;

  EXPECT_CALL(*mock_utility_function, Compute(::testing::_))
      .Times(4)
      .WillOnce(::testing::Return(kFirstMiUtilityFunction))
      .WillOnce(::testing::Return(kSecondMiUtilityFunction))
      .WillOnce(::testing::Return(kFirstMiUtilityFunction))
      .WillOnce(::testing::Return(kSecondMiUtilityFunction));
  std::vector<PccMonitorInterval> monitor_block{
      PccMonitorInterval(kTargetSendingRate * (1 + kEpsilon), kStartTime,
                         kIntervalDuration),
      PccMonitorInterval(kTargetSendingRate * (1 - kEpsilon),
                         kStartTime + kIntervalDuration, kIntervalDuration)};
  // To complete collecting feedback within monitor intervals.
  monitor_block[0].OnPacketsFeedback(
      CreatePacketResults({kStartTime + 3 * kIntervalDuration}, {}, {}));
  monitor_block[1].OnPacketsFeedback(
      CreatePacketResults({kStartTime + 3 * kIntervalDuration}, {}, {}));

  double gradient = (kFirstMiUtilityFunction - kSecondMiUtilityFunction) /
                    (kTargetSendingRate.bps() * 2 * kEpsilon);
  PccBitrateController bitrate_controller(
      kInitialConversionFactor, kInitialDynamicBoundary,
      kDynamicBoundaryIncrement, std::move(mock_utility_function));
  // If we are moving in the same direction - the step size should increase.
  EXPECT_EQ(bitrate_controller
                .ComputeRateUpdateForOnlineLearningMode(monitor_block,
                                                        kTargetSendingRate)
                .bps(),
            kTargetSendingRate.bps() + kInitialConversionFactor * gradient);
  EXPECT_EQ(bitrate_controller
                .ComputeRateUpdateForOnlineLearningMode(monitor_block,
                                                        kTargetSendingRate)
                .bps(),
            kTargetSendingRate.bps() + 2 * kInitialConversionFactor * gradient);
}

}  // namespace test
}  // namespace pcc
}  // namespace webrtc