aboutsummaryrefslogtreecommitdiff
path: root/modules/remote_bitrate_estimator/remote_bitrate_estimator_abs_send_time.cc
blob: ae960ab960a70342234b95e246869d0fc4aba9c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
/*
 *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/remote_bitrate_estimator/remote_bitrate_estimator_abs_send_time.h"

#include <math.h>

#include <algorithm>
#include <memory>
#include <utility>

#include "api/transport/field_trial_based_config.h"
#include "api/units/data_rate.h"
#include "api/units/data_size.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "modules/remote_bitrate_estimator/include/bwe_defines.h"
#include "modules/remote_bitrate_estimator/include/remote_bitrate_estimator.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/thread_annotations.h"
#include "system_wrappers/include/metrics.h"

namespace webrtc {
namespace {

constexpr TimeDelta kMinClusterDelta = TimeDelta::Millis(1);
constexpr TimeDelta kInitialProbingInterval = TimeDelta::Seconds(2);
constexpr int kTimestampGroupLengthMs = 5;
constexpr int kAbsSendTimeInterArrivalUpshift = 8;
constexpr int kInterArrivalShift =
    RTPHeaderExtension::kAbsSendTimeFraction + kAbsSendTimeInterArrivalUpshift;
constexpr int kMinClusterSize = 4;
constexpr int kMaxProbePackets = 15;
constexpr int kExpectedNumberOfProbes = 3;
constexpr double kTimestampToMs =
    1000.0 / static_cast<double>(1 << kInterArrivalShift);

absl::optional<DataRate> OptionalRateFromOptionalBps(
    absl::optional<int> bitrate_bps) {
  if (bitrate_bps) {
    return DataRate::BitsPerSec(*bitrate_bps);
  } else {
    return absl::nullopt;
  }
}

template <typename K, typename V>
std::vector<K> Keys(const std::map<K, V>& map) {
  std::vector<K> keys;
  keys.reserve(map.size());
  for (const auto& kv_pair : map) {
    keys.push_back(kv_pair.first);
  }
  return keys;
}

}  // namespace

RemoteBitrateEstimatorAbsSendTime::~RemoteBitrateEstimatorAbsSendTime() =
    default;

bool RemoteBitrateEstimatorAbsSendTime::IsWithinClusterBounds(
    TimeDelta send_delta,
    const Cluster& cluster_aggregate) {
  if (cluster_aggregate.count == 0)
    return true;
  TimeDelta cluster_mean =
      cluster_aggregate.send_mean / cluster_aggregate.count;
  return (send_delta - cluster_mean).Abs() < TimeDelta::Micros(2'500);
}

void RemoteBitrateEstimatorAbsSendTime::MaybeAddCluster(
    const Cluster& cluster_aggregate,
    std::list<Cluster>& clusters) {
  if (cluster_aggregate.count < kMinClusterSize ||
      cluster_aggregate.send_mean <= TimeDelta::Zero() ||
      cluster_aggregate.recv_mean <= TimeDelta::Zero()) {
    return;
  }

  Cluster cluster;
  cluster.send_mean = cluster_aggregate.send_mean / cluster_aggregate.count;
  cluster.recv_mean = cluster_aggregate.recv_mean / cluster_aggregate.count;
  cluster.mean_size = cluster_aggregate.mean_size / cluster_aggregate.count;
  cluster.count = cluster_aggregate.count;
  cluster.num_above_min_delta = cluster_aggregate.num_above_min_delta;
  clusters.push_back(cluster);
}

RemoteBitrateEstimatorAbsSendTime::RemoteBitrateEstimatorAbsSendTime(
    RemoteBitrateObserver* observer,
    Clock* clock)
    : clock_(clock),
      observer_(observer),
      detector_(&field_trials_),
      remote_rate_(&field_trials_) {
  RTC_DCHECK(clock_);
  RTC_DCHECK(observer_);
  RTC_LOG(LS_INFO) << "RemoteBitrateEstimatorAbsSendTime: Instantiating.";
}

std::list<RemoteBitrateEstimatorAbsSendTime::Cluster>
RemoteBitrateEstimatorAbsSendTime::ComputeClusters() const {
  std::list<Cluster> clusters;
  Cluster cluster_aggregate;
  Timestamp prev_send_time = Timestamp::MinusInfinity();
  Timestamp prev_recv_time = Timestamp::MinusInfinity();
  for (const Probe& probe : probes_) {
    if (prev_send_time.IsFinite()) {
      TimeDelta send_delta = probe.send_time - prev_send_time;
      TimeDelta recv_delta = probe.recv_time - prev_recv_time;
      if (send_delta >= kMinClusterDelta && recv_delta >= kMinClusterDelta) {
        ++cluster_aggregate.num_above_min_delta;
      }
      if (!IsWithinClusterBounds(send_delta, cluster_aggregate)) {
        MaybeAddCluster(cluster_aggregate, clusters);
        cluster_aggregate = Cluster();
      }
      cluster_aggregate.send_mean += send_delta;
      cluster_aggregate.recv_mean += recv_delta;
      cluster_aggregate.mean_size += probe.payload_size;
      ++cluster_aggregate.count;
    }
    prev_send_time = probe.send_time;
    prev_recv_time = probe.recv_time;
  }
  MaybeAddCluster(cluster_aggregate, clusters);
  return clusters;
}

const RemoteBitrateEstimatorAbsSendTime::Cluster*
RemoteBitrateEstimatorAbsSendTime::FindBestProbe(
    const std::list<Cluster>& clusters) const {
  DataRate highest_probe_bitrate = DataRate::Zero();
  const Cluster* best = nullptr;
  for (const auto& cluster : clusters) {
    if (cluster.send_mean == TimeDelta::Zero() ||
        cluster.recv_mean == TimeDelta::Zero()) {
      continue;
    }
    if (cluster.num_above_min_delta > cluster.count / 2 &&
        (cluster.recv_mean - cluster.send_mean <= TimeDelta::Millis(2) &&
         cluster.send_mean - cluster.recv_mean <= TimeDelta::Millis(5))) {
      DataRate probe_bitrate =
          std::min(cluster.SendBitrate(), cluster.RecvBitrate());
      if (probe_bitrate > highest_probe_bitrate) {
        highest_probe_bitrate = probe_bitrate;
        best = &cluster;
      }
    } else {
      RTC_LOG(LS_INFO) << "Probe failed, sent at "
                       << cluster.SendBitrate().bps() << " bps, received at "
                       << cluster.RecvBitrate().bps()
                       << " bps. Mean send delta: " << cluster.send_mean.ms()
                       << " ms, mean recv delta: " << cluster.recv_mean.ms()
                       << " ms, num probes: " << cluster.count;
      break;
    }
  }
  return best;
}

RemoteBitrateEstimatorAbsSendTime::ProbeResult
RemoteBitrateEstimatorAbsSendTime::ProcessClusters(Timestamp now) {
  std::list<Cluster> clusters = ComputeClusters();
  if (clusters.empty()) {
    // If we reach the max number of probe packets and still have no clusters,
    // we will remove the oldest one.
    if (probes_.size() >= kMaxProbePackets)
      probes_.pop_front();
    return ProbeResult::kNoUpdate;
  }

  if (const Cluster* best = FindBestProbe(clusters)) {
    DataRate probe_bitrate = std::min(best->SendBitrate(), best->RecvBitrate());
    // Make sure that a probe sent on a lower bitrate than our estimate can't
    // reduce the estimate.
    if (IsBitrateImproving(probe_bitrate)) {
      RTC_LOG(LS_INFO) << "Probe successful, sent at "
                       << best->SendBitrate().bps() << " bps, received at "
                       << best->RecvBitrate().bps()
                       << " bps. Mean send delta: " << best->send_mean.ms()
                       << " ms, mean recv delta: " << best->recv_mean.ms()
                       << " ms, num probes: " << best->count;
      remote_rate_.SetEstimate(probe_bitrate, now);
      return ProbeResult::kBitrateUpdated;
    }
  }

  // Not probing and received non-probe packet, or finished with current set
  // of probes.
  if (clusters.size() >= kExpectedNumberOfProbes)
    probes_.clear();
  return ProbeResult::kNoUpdate;
}

bool RemoteBitrateEstimatorAbsSendTime::IsBitrateImproving(
    DataRate probe_bitrate) const {
  bool initial_probe =
      !remote_rate_.ValidEstimate() && probe_bitrate > DataRate::Zero();
  bool bitrate_above_estimate = remote_rate_.ValidEstimate() &&
                                probe_bitrate > remote_rate_.LatestEstimate();
  return initial_probe || bitrate_above_estimate;
}

void RemoteBitrateEstimatorAbsSendTime::IncomingPacket(
    int64_t arrival_time_ms,
    size_t payload_size,
    const RTPHeader& header) {
  RTC_DCHECK_RUNS_SERIALIZED(&network_race_);
  if (!header.extension.hasAbsoluteSendTime) {
    RTC_LOG(LS_WARNING)
        << "RemoteBitrateEstimatorAbsSendTimeImpl: Incoming packet "
           "is missing absolute send time extension!";
    return;
  }
  IncomingPacketInfo(Timestamp::Millis(arrival_time_ms),
                     header.extension.absoluteSendTime,
                     DataSize::Bytes(payload_size), header.ssrc);
}

void RemoteBitrateEstimatorAbsSendTime::IncomingPacketInfo(
    Timestamp arrival_time,
    uint32_t send_time_24bits,
    DataSize payload_size,
    uint32_t ssrc) {
  RTC_CHECK(send_time_24bits < (1ul << 24));
  if (!uma_recorded_) {
    RTC_HISTOGRAM_ENUMERATION(kBweTypeHistogram, BweNames::kReceiverAbsSendTime,
                              BweNames::kBweNamesMax);
    uma_recorded_ = true;
  }
  // Shift up send time to use the full 32 bits that inter_arrival works with,
  // so wrapping works properly.
  uint32_t timestamp = send_time_24bits << kAbsSendTimeInterArrivalUpshift;
  Timestamp send_time =
      Timestamp::Millis(static_cast<int64_t>(timestamp) * kTimestampToMs);

  Timestamp now = clock_->CurrentTime();
  // TODO(holmer): SSRCs are only needed for REMB, should be broken out from
  // here.

  // Check if incoming bitrate estimate is valid, and if it needs to be reset.
  absl::optional<uint32_t> incoming_bitrate =
      incoming_bitrate_.Rate(arrival_time.ms());
  if (incoming_bitrate) {
    incoming_bitrate_initialized_ = true;
  } else if (incoming_bitrate_initialized_) {
    // Incoming bitrate had a previous valid value, but now not enough data
    // point are left within the current window. Reset incoming bitrate
    // estimator so that the window size will only contain new data points.
    incoming_bitrate_.Reset();
    incoming_bitrate_initialized_ = false;
  }
  incoming_bitrate_.Update(payload_size.bytes(), arrival_time.ms());

  if (first_packet_time_.IsInfinite()) {
    first_packet_time_ = now;
  }

  uint32_t ts_delta = 0;
  int64_t t_delta = 0;
  int size_delta = 0;
  bool update_estimate = false;
  DataRate target_bitrate = DataRate::Zero();
  std::vector<uint32_t> ssrcs;
  {
    MutexLock lock(&mutex_);

    TimeoutStreams(now);
    RTC_DCHECK(inter_arrival_);
    RTC_DCHECK(estimator_);
    // TODO(danilchap): Replace 5 lines below with insert_or_assign when that
    // c++17 function is available.
    auto inserted = ssrcs_.insert(std::make_pair(ssrc, now));
    if (!inserted.second) {
      // Already inserted, update.
      inserted.first->second = now;
    }

    // For now only try to detect probes while we don't have a valid estimate.
    // We currently assume that only packets larger than 200 bytes are paced by
    // the sender.
    static constexpr DataSize kMinProbePacketSize = DataSize::Bytes(200);
    if (payload_size > kMinProbePacketSize &&
        (!remote_rate_.ValidEstimate() ||
         now - first_packet_time_ < kInitialProbingInterval)) {
      // TODO(holmer): Use a map instead to get correct order?
      if (total_probes_received_ < kMaxProbePackets) {
        TimeDelta send_delta = TimeDelta::Millis(-1);
        TimeDelta recv_delta = TimeDelta::Millis(-1);
        if (!probes_.empty()) {
          send_delta = send_time - probes_.back().send_time;
          recv_delta = arrival_time - probes_.back().recv_time;
        }
        RTC_LOG(LS_INFO) << "Probe packet received: send time="
                         << send_time.ms()
                         << " ms, recv time=" << arrival_time.ms()
                         << " ms, send delta=" << send_delta.ms()
                         << " ms, recv delta=" << recv_delta.ms() << " ms.";
      }
      probes_.emplace_back(send_time, arrival_time, payload_size);
      ++total_probes_received_;
      // Make sure that a probe which updated the bitrate immediately has an
      // effect by calling the OnReceiveBitrateChanged callback.
      if (ProcessClusters(now) == ProbeResult::kBitrateUpdated)
        update_estimate = true;
    }
    if (inter_arrival_->ComputeDeltas(timestamp, arrival_time.ms(), now.ms(),
                                      payload_size.bytes(), &ts_delta, &t_delta,
                                      &size_delta)) {
      double ts_delta_ms = (1000.0 * ts_delta) / (1 << kInterArrivalShift);
      estimator_->Update(t_delta, ts_delta_ms, size_delta, detector_.State(),
                         arrival_time.ms());
      detector_.Detect(estimator_->offset(), ts_delta_ms,
                       estimator_->num_of_deltas(), arrival_time.ms());
    }

    if (!update_estimate) {
      // Check if it's time for a periodic update or if we should update because
      // of an over-use.
      if (last_update_.IsInfinite() ||
          now.ms() - last_update_.ms() >
              remote_rate_.GetFeedbackInterval().ms()) {
        update_estimate = true;
      } else if (detector_.State() == BandwidthUsage::kBwOverusing) {
        absl::optional<uint32_t> incoming_rate =
            incoming_bitrate_.Rate(arrival_time.ms());
        if (incoming_rate && remote_rate_.TimeToReduceFurther(
                                 now, DataRate::BitsPerSec(*incoming_rate))) {
          update_estimate = true;
        }
      }
    }

    if (update_estimate) {
      // The first overuse should immediately trigger a new estimate.
      // We also have to update the estimate immediately if we are overusing
      // and the target bitrate is too high compared to what we are receiving.
      const RateControlInput input(
          detector_.State(), OptionalRateFromOptionalBps(
                                 incoming_bitrate_.Rate(arrival_time.ms())));
      target_bitrate = remote_rate_.Update(&input, now);
      update_estimate = remote_rate_.ValidEstimate();
      ssrcs = Keys(ssrcs_);
    }
  }
  if (update_estimate) {
    last_update_ = now;
    observer_->OnReceiveBitrateChanged(ssrcs, target_bitrate.bps<uint32_t>());
  }
}

void RemoteBitrateEstimatorAbsSendTime::Process() {}

int64_t RemoteBitrateEstimatorAbsSendTime::TimeUntilNextProcess() {
  const int64_t kDisabledModuleTime = 1000;
  return kDisabledModuleTime;
}

void RemoteBitrateEstimatorAbsSendTime::TimeoutStreams(Timestamp now) {
  for (auto it = ssrcs_.begin(); it != ssrcs_.end();) {
    if (now - it->second > TimeDelta::Millis(kStreamTimeOutMs)) {
      ssrcs_.erase(it++);
    } else {
      ++it;
    }
  }
  if (ssrcs_.empty()) {
    // We can't update the estimate if we don't have any active streams.
    inter_arrival_ = std::make_unique<InterArrival>(
        (kTimestampGroupLengthMs << kInterArrivalShift) / 1000, kTimestampToMs,
        true);
    estimator_ = std::make_unique<OveruseEstimator>(OverUseDetectorOptions());
    // We deliberately don't reset the first_packet_time_ms_ here for now since
    // we only probe for bandwidth in the beginning of a call right now.
  }
}

void RemoteBitrateEstimatorAbsSendTime::OnRttUpdate(int64_t avg_rtt_ms,
                                                    int64_t /*max_rtt_ms*/) {
  MutexLock lock(&mutex_);
  remote_rate_.SetRtt(TimeDelta::Millis(avg_rtt_ms));
}

void RemoteBitrateEstimatorAbsSendTime::RemoveStream(uint32_t ssrc) {
  MutexLock lock(&mutex_);
  ssrcs_.erase(ssrc);
}

bool RemoteBitrateEstimatorAbsSendTime::LatestEstimate(
    std::vector<uint32_t>* ssrcs,
    uint32_t* bitrate_bps) const {
  // Currently accessed from both the process thread (see
  // ModuleRtpRtcpImpl::Process()) and the configuration thread (see
  // Call::GetStats()). Should in the future only be accessed from a single
  // thread.
  RTC_DCHECK(ssrcs);
  RTC_DCHECK(bitrate_bps);
  MutexLock lock(&mutex_);
  if (!remote_rate_.ValidEstimate()) {
    return false;
  }
  *ssrcs = Keys(ssrcs_);
  if (ssrcs_.empty()) {
    *bitrate_bps = 0;
  } else {
    *bitrate_bps = remote_rate_.LatestEstimate().bps<uint32_t>();
  }
  return true;
}

void RemoteBitrateEstimatorAbsSendTime::SetMinBitrate(int min_bitrate_bps) {
  // Called from both the configuration thread and the network thread. Shouldn't
  // be called from the network thread in the future.
  MutexLock lock(&mutex_);
  remote_rate_.SetMinBitrate(DataRate::BitsPerSec(min_bitrate_bps));
}
}  // namespace webrtc