aboutsummaryrefslogtreecommitdiff
path: root/modules/video_coding/codecs/h264/h264_encoder_impl.cc
blob: 7a9f640ce6a023e2e01c0d486c4a21949c1b366b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
/*
 *  Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 *
 */

// Everything declared/defined in this header is only required when WebRTC is
// build with H264 support, please do not move anything out of the
// #ifdef unless needed and tested.
#ifdef WEBRTC_USE_H264

#include "modules/video_coding/codecs/h264/h264_encoder_impl.h"

#include <algorithm>
#include <limits>
#include <string>

#include "absl/strings/match.h"
#include "absl/types/optional.h"
#include "api/video/video_codec_constants.h"
#include "api/video_codecs/scalability_mode.h"
#include "common_video/libyuv/include/webrtc_libyuv.h"
#include "modules/video_coding/svc/create_scalability_structure.h"
#include "modules/video_coding/utility/simulcast_rate_allocator.h"
#include "modules/video_coding/utility/simulcast_utility.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/time_utils.h"
#include "system_wrappers/include/metrics.h"
#include "third_party/libyuv/include/libyuv/convert.h"
#include "third_party/libyuv/include/libyuv/scale.h"
#include "third_party/openh264/src/codec/api/wels/codec_api.h"
#include "third_party/openh264/src/codec/api/wels/codec_app_def.h"
#include "third_party/openh264/src/codec/api/wels/codec_def.h"
#include "third_party/openh264/src/codec/api/wels/codec_ver.h"

namespace webrtc {

namespace {

const bool kOpenH264EncoderDetailedLogging = false;

// QP scaling thresholds.
static const int kLowH264QpThreshold = 24;
static const int kHighH264QpThreshold = 37;

// Used by histograms. Values of entries should not be changed.
enum H264EncoderImplEvent {
  kH264EncoderEventInit = 0,
  kH264EncoderEventError = 1,
  kH264EncoderEventMax = 16,
};

int NumberOfThreads(absl::optional<int> encoder_thread_limit,
                    int width,
                    int height,
                    int number_of_cores) {
  // TODO(hbos): In Chromium, multiple threads do not work with sandbox on Mac,
  // see crbug.com/583348. Until further investigated, only use one thread.
  // While this limitation is gone, this changes the bitstream format (see
  // bugs.webrtc.org/14368) so still guarded by field trial to allow for
  // experimentation using th experimental
  // WebRTC-VideoEncoderSettings/encoder_thread_limit trial.
  if (encoder_thread_limit.has_value()) {
    int limit = encoder_thread_limit.value();
    RTC_DCHECK_GE(limit, 1);
    if (width * height >= 1920 * 1080 && number_of_cores > 8) {
      return std::min(limit, 8);  // 8 threads for 1080p on high perf machines.
    } else if (width * height > 1280 * 960 && number_of_cores >= 6) {
      return std::min(limit, 3);  // 3 threads for 1080p.
    } else if (width * height > 640 * 480 && number_of_cores >= 3) {
      return std::min(limit, 2);  // 2 threads for qHD/HD.
    } else {
      return 1;  // 1 thread for VGA or less.
    }
  }
  // TODO(sprang): Also check sSliceArgument.uiSliceNum on GetEncoderParams(),
  //               before enabling multithreading here.
  return 1;
}

VideoFrameType ConvertToVideoFrameType(EVideoFrameType type) {
  switch (type) {
    case videoFrameTypeIDR:
      return VideoFrameType::kVideoFrameKey;
    case videoFrameTypeSkip:
    case videoFrameTypeI:
    case videoFrameTypeP:
    case videoFrameTypeIPMixed:
      return VideoFrameType::kVideoFrameDelta;
    case videoFrameTypeInvalid:
      break;
  }
  RTC_DCHECK_NOTREACHED() << "Unexpected/invalid frame type: " << type;
  return VideoFrameType::kEmptyFrame;
}

absl::optional<ScalabilityMode> ScalabilityModeFromTemporalLayers(
    int num_temporal_layers) {
  switch (num_temporal_layers) {
    case 0:
      break;
    case 1:
      return ScalabilityMode::kL1T1;
    case 2:
      return ScalabilityMode::kL1T2;
    case 3:
      return ScalabilityMode::kL1T3;
    default:
      RTC_DCHECK_NOTREACHED();
  }
  return absl::nullopt;
}

}  // namespace

// Helper method used by H264EncoderImpl::Encode.
// Copies the encoded bytes from `info` to `encoded_image`. The
// `encoded_image->_buffer` may be deleted and reallocated if a bigger buffer is
// required.
//
// After OpenH264 encoding, the encoded bytes are stored in `info` spread out
// over a number of layers and "NAL units". Each NAL unit is a fragment starting
// with the four-byte start code {0,0,0,1}. All of this data (including the
// start codes) is copied to the `encoded_image->_buffer`.
static void RtpFragmentize(EncodedImage* encoded_image, SFrameBSInfo* info) {
  // Calculate minimum buffer size required to hold encoded data.
  size_t required_capacity = 0;
  size_t fragments_count = 0;
  for (int layer = 0; layer < info->iLayerNum; ++layer) {
    const SLayerBSInfo& layerInfo = info->sLayerInfo[layer];
    for (int nal = 0; nal < layerInfo.iNalCount; ++nal, ++fragments_count) {
      RTC_CHECK_GE(layerInfo.pNalLengthInByte[nal], 0);
      // Ensure `required_capacity` will not overflow.
      RTC_CHECK_LE(layerInfo.pNalLengthInByte[nal],
                   std::numeric_limits<size_t>::max() - required_capacity);
      required_capacity += layerInfo.pNalLengthInByte[nal];
    }
  }
  auto buffer = EncodedImageBuffer::Create(required_capacity);
  encoded_image->SetEncodedData(buffer);

  // Iterate layers and NAL units, note each NAL unit as a fragment and copy
  // the data to `encoded_image->_buffer`.
  const uint8_t start_code[4] = {0, 0, 0, 1};
  size_t frag = 0;
  encoded_image->set_size(0);
  for (int layer = 0; layer < info->iLayerNum; ++layer) {
    const SLayerBSInfo& layerInfo = info->sLayerInfo[layer];
    // Iterate NAL units making up this layer, noting fragments.
    size_t layer_len = 0;
    for (int nal = 0; nal < layerInfo.iNalCount; ++nal, ++frag) {
      // Because the sum of all layer lengths, `required_capacity`, fits in a
      // `size_t`, we know that any indices in-between will not overflow.
      RTC_DCHECK_GE(layerInfo.pNalLengthInByte[nal], 4);
      RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len + 0], start_code[0]);
      RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len + 1], start_code[1]);
      RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len + 2], start_code[2]);
      RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len + 3], start_code[3]);
      layer_len += layerInfo.pNalLengthInByte[nal];
    }
    // Copy the entire layer's data (including start codes).
    memcpy(buffer->data() + encoded_image->size(), layerInfo.pBsBuf, layer_len);
    encoded_image->set_size(encoded_image->size() + layer_len);
  }
}

H264EncoderImpl::H264EncoderImpl(const cricket::VideoCodec& codec)
    : packetization_mode_(H264PacketizationMode::SingleNalUnit),
      max_payload_size_(0),
      number_of_cores_(0),
      encoded_image_callback_(nullptr),
      has_reported_init_(false),
      has_reported_error_(false) {
  RTC_CHECK(absl::EqualsIgnoreCase(codec.name, cricket::kH264CodecName));
  std::string packetization_mode_string;
  if (codec.GetParam(cricket::kH264FmtpPacketizationMode,
                     &packetization_mode_string) &&
      packetization_mode_string == "1") {
    packetization_mode_ = H264PacketizationMode::NonInterleaved;
  }
  downscaled_buffers_.reserve(kMaxSimulcastStreams - 1);
  encoded_images_.reserve(kMaxSimulcastStreams);
  encoders_.reserve(kMaxSimulcastStreams);
  configurations_.reserve(kMaxSimulcastStreams);
  tl0sync_limit_.reserve(kMaxSimulcastStreams);
  svc_controllers_.reserve(kMaxSimulcastStreams);
}

H264EncoderImpl::~H264EncoderImpl() {
  Release();
}

int32_t H264EncoderImpl::InitEncode(const VideoCodec* inst,
                                    const VideoEncoder::Settings& settings) {
  ReportInit();
  if (!inst || inst->codecType != kVideoCodecH264) {
    ReportError();
    return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
  }
  if (inst->maxFramerate == 0) {
    ReportError();
    return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
  }
  if (inst->width < 1 || inst->height < 1) {
    ReportError();
    return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
  }

  int32_t release_ret = Release();
  if (release_ret != WEBRTC_VIDEO_CODEC_OK) {
    ReportError();
    return release_ret;
  }

  int number_of_streams = SimulcastUtility::NumberOfSimulcastStreams(*inst);
  bool doing_simulcast = (number_of_streams > 1);

  if (doing_simulcast &&
      !SimulcastUtility::ValidSimulcastParameters(*inst, number_of_streams)) {
    return WEBRTC_VIDEO_CODEC_ERR_SIMULCAST_PARAMETERS_NOT_SUPPORTED;
  }
  downscaled_buffers_.resize(number_of_streams - 1);
  encoded_images_.resize(number_of_streams);
  encoders_.resize(number_of_streams);
  pictures_.resize(number_of_streams);
  svc_controllers_.resize(number_of_streams);
  scalability_modes_.resize(number_of_streams);
  configurations_.resize(number_of_streams);
  tl0sync_limit_.resize(number_of_streams);

  max_payload_size_ = settings.max_payload_size;
  number_of_cores_ = settings.number_of_cores;
  encoder_thread_limit_ = settings.encoder_thread_limit;
  codec_ = *inst;

  // Code expects simulcastStream resolutions to be correct, make sure they are
  // filled even when there are no simulcast layers.
  if (codec_.numberOfSimulcastStreams == 0) {
    codec_.simulcastStream[0].width = codec_.width;
    codec_.simulcastStream[0].height = codec_.height;
  }

  for (int i = 0, idx = number_of_streams - 1; i < number_of_streams;
       ++i, --idx) {
    ISVCEncoder* openh264_encoder;
    // Create encoder.
    if (WelsCreateSVCEncoder(&openh264_encoder) != 0) {
      // Failed to create encoder.
      RTC_LOG(LS_ERROR) << "Failed to create OpenH264 encoder";
      RTC_DCHECK(!openh264_encoder);
      Release();
      ReportError();
      return WEBRTC_VIDEO_CODEC_ERROR;
    }
    RTC_DCHECK(openh264_encoder);
    if (kOpenH264EncoderDetailedLogging) {
      int trace_level = WELS_LOG_DETAIL;
      openh264_encoder->SetOption(ENCODER_OPTION_TRACE_LEVEL, &trace_level);
    }
    // else WELS_LOG_DEFAULT is used by default.

    // Store h264 encoder.
    encoders_[i] = openh264_encoder;

    // Set internal settings from codec_settings
    configurations_[i].simulcast_idx = idx;
    configurations_[i].sending = false;
    configurations_[i].width = codec_.simulcastStream[idx].width;
    configurations_[i].height = codec_.simulcastStream[idx].height;
    configurations_[i].max_frame_rate = static_cast<float>(codec_.maxFramerate);
    configurations_[i].frame_dropping_on = codec_.GetFrameDropEnabled();
    configurations_[i].key_frame_interval = codec_.H264()->keyFrameInterval;
    configurations_[i].num_temporal_layers =
        std::max(codec_.H264()->numberOfTemporalLayers,
                 codec_.simulcastStream[idx].numberOfTemporalLayers);

    // Create downscaled image buffers.
    if (i > 0) {
      downscaled_buffers_[i - 1] = I420Buffer::Create(
          configurations_[i].width, configurations_[i].height,
          configurations_[i].width, configurations_[i].width / 2,
          configurations_[i].width / 2);
    }

    // Codec_settings uses kbits/second; encoder uses bits/second.
    configurations_[i].max_bps = codec_.maxBitrate * 1000;
    configurations_[i].target_bps = codec_.startBitrate * 1000;

    // Create encoder parameters based on the layer configuration.
    SEncParamExt encoder_params = CreateEncoderParams(i);

    // Initialize.
    if (openh264_encoder->InitializeExt(&encoder_params) != 0) {
      RTC_LOG(LS_ERROR) << "Failed to initialize OpenH264 encoder";
      Release();
      ReportError();
      return WEBRTC_VIDEO_CODEC_ERROR;
    }
    // TODO(pbos): Base init params on these values before submitting.
    int video_format = EVideoFormatType::videoFormatI420;
    openh264_encoder->SetOption(ENCODER_OPTION_DATAFORMAT, &video_format);

    // Initialize encoded image. Default buffer size: size of unencoded data.

    const size_t new_capacity =
        CalcBufferSize(VideoType::kI420, codec_.simulcastStream[idx].width,
                       codec_.simulcastStream[idx].height);
    encoded_images_[i].SetEncodedData(EncodedImageBuffer::Create(new_capacity));
    encoded_images_[i]._encodedWidth = codec_.simulcastStream[idx].width;
    encoded_images_[i]._encodedHeight = codec_.simulcastStream[idx].height;
    encoded_images_[i].set_size(0);

    tl0sync_limit_[i] = configurations_[i].num_temporal_layers;
    scalability_modes_[i] = ScalabilityModeFromTemporalLayers(
        configurations_[i].num_temporal_layers);
    if (scalability_modes_[i].has_value()) {
      svc_controllers_[i] = CreateScalabilityStructure(*scalability_modes_[i]);
      if (svc_controllers_[i] == nullptr) {
        RTC_LOG(LS_ERROR) << "Failed to create scalability structure";
        Release();
        ReportError();
        return WEBRTC_VIDEO_CODEC_ERROR;
      }
    }
  }

  SimulcastRateAllocator init_allocator(codec_);
  VideoBitrateAllocation allocation =
      init_allocator.Allocate(VideoBitrateAllocationParameters(
          DataRate::KilobitsPerSec(codec_.startBitrate), codec_.maxFramerate));
  SetRates(RateControlParameters(allocation, codec_.maxFramerate));
  return WEBRTC_VIDEO_CODEC_OK;
}

int32_t H264EncoderImpl::Release() {
  while (!encoders_.empty()) {
    ISVCEncoder* openh264_encoder = encoders_.back();
    if (openh264_encoder) {
      RTC_CHECK_EQ(0, openh264_encoder->Uninitialize());
      WelsDestroySVCEncoder(openh264_encoder);
    }
    encoders_.pop_back();
  }
  downscaled_buffers_.clear();
  configurations_.clear();
  encoded_images_.clear();
  pictures_.clear();
  tl0sync_limit_.clear();
  svc_controllers_.clear();
  scalability_modes_.clear();
  return WEBRTC_VIDEO_CODEC_OK;
}

int32_t H264EncoderImpl::RegisterEncodeCompleteCallback(
    EncodedImageCallback* callback) {
  encoded_image_callback_ = callback;
  return WEBRTC_VIDEO_CODEC_OK;
}

void H264EncoderImpl::SetRates(const RateControlParameters& parameters) {
  if (encoders_.empty()) {
    RTC_LOG(LS_WARNING) << "SetRates() while uninitialized.";
    return;
  }

  if (parameters.framerate_fps < 1.0) {
    RTC_LOG(LS_WARNING) << "Invalid frame rate: " << parameters.framerate_fps;
    return;
  }

  if (parameters.bitrate.get_sum_bps() == 0) {
    // Encoder paused, turn off all encoding.
    for (size_t i = 0; i < configurations_.size(); ++i) {
      configurations_[i].SetStreamState(false);
    }
    return;
  }

  codec_.maxFramerate = static_cast<uint32_t>(parameters.framerate_fps);

  size_t stream_idx = encoders_.size() - 1;
  for (size_t i = 0; i < encoders_.size(); ++i, --stream_idx) {
    // Update layer config.
    configurations_[i].target_bps =
        parameters.bitrate.GetSpatialLayerSum(stream_idx);
    configurations_[i].max_frame_rate = parameters.framerate_fps;

    if (configurations_[i].target_bps) {
      configurations_[i].SetStreamState(true);

      // Update h264 encoder.
      SBitrateInfo target_bitrate;
      memset(&target_bitrate, 0, sizeof(SBitrateInfo));
      target_bitrate.iLayer = SPATIAL_LAYER_ALL,
      target_bitrate.iBitrate = configurations_[i].target_bps;
      encoders_[i]->SetOption(ENCODER_OPTION_BITRATE, &target_bitrate);
      encoders_[i]->SetOption(ENCODER_OPTION_FRAME_RATE,
                              &configurations_[i].max_frame_rate);
    } else {
      configurations_[i].SetStreamState(false);
    }
  }
}

int32_t H264EncoderImpl::Encode(
    const VideoFrame& input_frame,
    const std::vector<VideoFrameType>* frame_types) {
  if (encoders_.empty()) {
    ReportError();
    return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
  }
  if (!encoded_image_callback_) {
    RTC_LOG(LS_WARNING)
        << "InitEncode() has been called, but a callback function "
           "has not been set with RegisterEncodeCompleteCallback()";
    ReportError();
    return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
  }

  rtc::scoped_refptr<I420BufferInterface> frame_buffer =
      input_frame.video_frame_buffer()->ToI420();
  if (!frame_buffer) {
    RTC_LOG(LS_ERROR) << "Failed to convert "
                      << VideoFrameBufferTypeToString(
                             input_frame.video_frame_buffer()->type())
                      << " image to I420. Can't encode frame.";
    return WEBRTC_VIDEO_CODEC_ENCODER_FAILURE;
  }
  RTC_CHECK(frame_buffer->type() == VideoFrameBuffer::Type::kI420 ||
            frame_buffer->type() == VideoFrameBuffer::Type::kI420A);

  bool is_keyframe_needed = false;
  for (size_t i = 0; i < configurations_.size(); ++i) {
    if (configurations_[i].key_frame_request && configurations_[i].sending) {
      // This is legacy behavior, generating a keyframe on all layers
      // when generating one for a layer that became active for the first time
      // or after being disabled.
      is_keyframe_needed = true;
      break;
    }
  }

  RTC_DCHECK_EQ(configurations_[0].width, frame_buffer->width());
  RTC_DCHECK_EQ(configurations_[0].height, frame_buffer->height());

  // Encode image for each layer.
  for (size_t i = 0; i < encoders_.size(); ++i) {
    // EncodeFrame input.
    pictures_[i] = {0};
    pictures_[i].iPicWidth = configurations_[i].width;
    pictures_[i].iPicHeight = configurations_[i].height;
    pictures_[i].iColorFormat = EVideoFormatType::videoFormatI420;
    pictures_[i].uiTimeStamp = input_frame.ntp_time_ms();
    // Downscale images on second and ongoing layers.
    if (i == 0) {
      pictures_[i].iStride[0] = frame_buffer->StrideY();
      pictures_[i].iStride[1] = frame_buffer->StrideU();
      pictures_[i].iStride[2] = frame_buffer->StrideV();
      pictures_[i].pData[0] = const_cast<uint8_t*>(frame_buffer->DataY());
      pictures_[i].pData[1] = const_cast<uint8_t*>(frame_buffer->DataU());
      pictures_[i].pData[2] = const_cast<uint8_t*>(frame_buffer->DataV());
    } else {
      pictures_[i].iStride[0] = downscaled_buffers_[i - 1]->StrideY();
      pictures_[i].iStride[1] = downscaled_buffers_[i - 1]->StrideU();
      pictures_[i].iStride[2] = downscaled_buffers_[i - 1]->StrideV();
      pictures_[i].pData[0] =
          const_cast<uint8_t*>(downscaled_buffers_[i - 1]->DataY());
      pictures_[i].pData[1] =
          const_cast<uint8_t*>(downscaled_buffers_[i - 1]->DataU());
      pictures_[i].pData[2] =
          const_cast<uint8_t*>(downscaled_buffers_[i - 1]->DataV());
      // Scale the image down a number of times by downsampling factor.
      libyuv::I420Scale(pictures_[i - 1].pData[0], pictures_[i - 1].iStride[0],
                        pictures_[i - 1].pData[1], pictures_[i - 1].iStride[1],
                        pictures_[i - 1].pData[2], pictures_[i - 1].iStride[2],
                        configurations_[i - 1].width,
                        configurations_[i - 1].height, pictures_[i].pData[0],
                        pictures_[i].iStride[0], pictures_[i].pData[1],
                        pictures_[i].iStride[1], pictures_[i].pData[2],
                        pictures_[i].iStride[2], configurations_[i].width,
                        configurations_[i].height, libyuv::kFilterBox);
    }

    if (!configurations_[i].sending) {
      continue;
    }
    if (frame_types != nullptr && i < frame_types->size()) {
      // Skip frame?
      if ((*frame_types)[i] == VideoFrameType::kEmptyFrame) {
        continue;
      }
    }
    // Send a key frame either when this layer is configured to require one
    // or we have explicitly been asked to.
    const size_t simulcast_idx =
        static_cast<size_t>(configurations_[i].simulcast_idx);
    bool send_key_frame =
        is_keyframe_needed ||
        (frame_types && simulcast_idx < frame_types->size() &&
         (*frame_types)[simulcast_idx] == VideoFrameType::kVideoFrameKey);
    if (send_key_frame) {
      // API doc says ForceIntraFrame(false) does nothing, but calling this
      // function forces a key frame regardless of the `bIDR` argument's value.
      // (If every frame is a key frame we get lag/delays.)
      encoders_[i]->ForceIntraFrame(true);
      configurations_[i].key_frame_request = false;
    }
    // EncodeFrame output.
    SFrameBSInfo info;
    memset(&info, 0, sizeof(SFrameBSInfo));

    std::vector<ScalableVideoController::LayerFrameConfig> layer_frames;
    if (svc_controllers_[i]) {
      layer_frames = svc_controllers_[i]->NextFrameConfig(send_key_frame);
      RTC_CHECK_EQ(layer_frames.size(), 1);
    }

    // Encode!
    int enc_ret = encoders_[i]->EncodeFrame(&pictures_[i], &info);
    if (enc_ret != 0) {
      RTC_LOG(LS_ERROR)
          << "OpenH264 frame encoding failed, EncodeFrame returned " << enc_ret
          << ".";
      ReportError();
      return WEBRTC_VIDEO_CODEC_ERROR;
    }

    encoded_images_[i]._encodedWidth = configurations_[i].width;
    encoded_images_[i]._encodedHeight = configurations_[i].height;
    encoded_images_[i].SetRtpTimestamp(input_frame.timestamp());
    encoded_images_[i].SetColorSpace(input_frame.color_space());
    encoded_images_[i]._frameType = ConvertToVideoFrameType(info.eFrameType);
    encoded_images_[i].SetSimulcastIndex(configurations_[i].simulcast_idx);

    // Split encoded image up into fragments. This also updates
    // `encoded_image_`.
    RtpFragmentize(&encoded_images_[i], &info);

    // Encoder can skip frames to save bandwidth in which case
    // `encoded_images_[i]._length` == 0.
    if (encoded_images_[i].size() > 0) {
      // Parse QP.
      h264_bitstream_parser_.ParseBitstream(encoded_images_[i]);
      encoded_images_[i].qp_ =
          h264_bitstream_parser_.GetLastSliceQp().value_or(-1);

      // Deliver encoded image.
      CodecSpecificInfo codec_specific;
      codec_specific.codecType = kVideoCodecH264;
      codec_specific.codecSpecific.H264.packetization_mode =
          packetization_mode_;
      codec_specific.codecSpecific.H264.temporal_idx = kNoTemporalIdx;
      codec_specific.codecSpecific.H264.idr_frame =
          info.eFrameType == videoFrameTypeIDR;
      codec_specific.codecSpecific.H264.base_layer_sync = false;
      if (configurations_[i].num_temporal_layers > 1) {
        const uint8_t tid = info.sLayerInfo[0].uiTemporalId;
        codec_specific.codecSpecific.H264.temporal_idx = tid;
        codec_specific.codecSpecific.H264.base_layer_sync =
            tid > 0 && tid < tl0sync_limit_[i];
        if (svc_controllers_[i]) {
          if (layer_frames[0].TemporalId() != tid) {
            RTC_LOG(LS_WARNING)
                << "Encoder produced a frame for layer S" << (i + 1) << "T"
                << tid + 1 << " that wasn't requested.";
            continue;
          }
          encoded_images_[i].SetTemporalIndex(tid);
        }
        if (codec_specific.codecSpecific.H264.base_layer_sync) {
          tl0sync_limit_[i] = tid;
        }
        if (tid == 0) {
          tl0sync_limit_[i] = configurations_[i].num_temporal_layers;
        }
      }
      if (svc_controllers_[i]) {
        codec_specific.generic_frame_info =
            svc_controllers_[i]->OnEncodeDone(layer_frames[0]);
        if (send_key_frame && codec_specific.generic_frame_info.has_value()) {
          codec_specific.template_structure =
              svc_controllers_[i]->DependencyStructure();
        }
        codec_specific.scalability_mode = scalability_modes_[i];
      }
      encoded_image_callback_->OnEncodedImage(encoded_images_[i],
                                              &codec_specific);
    }
  }
  return WEBRTC_VIDEO_CODEC_OK;
}

// Initialization parameters.
// There are two ways to initialize. There is SEncParamBase (cleared with
// memset(&p, 0, sizeof(SEncParamBase)) used in Initialize, and SEncParamExt
// which is a superset of SEncParamBase (cleared with GetDefaultParams) used
// in InitializeExt.
SEncParamExt H264EncoderImpl::CreateEncoderParams(size_t i) const {
  SEncParamExt encoder_params;
  encoders_[i]->GetDefaultParams(&encoder_params);
  if (codec_.mode == VideoCodecMode::kRealtimeVideo) {
    encoder_params.iUsageType = CAMERA_VIDEO_REAL_TIME;
  } else if (codec_.mode == VideoCodecMode::kScreensharing) {
    encoder_params.iUsageType = SCREEN_CONTENT_REAL_TIME;
  } else {
    RTC_DCHECK_NOTREACHED();
  }
  encoder_params.iPicWidth = configurations_[i].width;
  encoder_params.iPicHeight = configurations_[i].height;
  encoder_params.iTargetBitrate = configurations_[i].target_bps;
  // Keep unspecified. WebRTC's max codec bitrate is not the same setting
  // as OpenH264's iMaxBitrate. More details in https://crbug.com/webrtc/11543
  encoder_params.iMaxBitrate = UNSPECIFIED_BIT_RATE;
  // Rate Control mode
  encoder_params.iRCMode = RC_BITRATE_MODE;
  encoder_params.fMaxFrameRate = configurations_[i].max_frame_rate;

  // The following parameters are extension parameters (they're in SEncParamExt,
  // not in SEncParamBase).
  encoder_params.bEnableFrameSkip = configurations_[i].frame_dropping_on;
  // `uiIntraPeriod`    - multiple of GOP size
  // `keyFrameInterval` - number of frames
  encoder_params.uiIntraPeriod = configurations_[i].key_frame_interval;
  // Reuse SPS id if possible. This helps to avoid reset of chromium HW decoder
  // on each key-frame.
  // Note that WebRTC resets encoder on resolution change which makes all
  // EParameterSetStrategy modes except INCREASING_ID (default) essentially
  // equivalent to CONSTANT_ID.
  encoder_params.eSpsPpsIdStrategy = SPS_LISTING;
  encoder_params.uiMaxNalSize = 0;
  // Threading model: use auto.
  //  0: auto (dynamic imp. internal encoder)
  //  1: single thread (default value)
  // >1: number of threads
  encoder_params.iMultipleThreadIdc =
      NumberOfThreads(encoder_thread_limit_, encoder_params.iPicWidth,
                      encoder_params.iPicHeight, number_of_cores_);
  // The base spatial layer 0 is the only one we use.
  encoder_params.sSpatialLayers[0].iVideoWidth = encoder_params.iPicWidth;
  encoder_params.sSpatialLayers[0].iVideoHeight = encoder_params.iPicHeight;
  encoder_params.sSpatialLayers[0].fFrameRate = encoder_params.fMaxFrameRate;
  encoder_params.sSpatialLayers[0].iSpatialBitrate =
      encoder_params.iTargetBitrate;
  encoder_params.sSpatialLayers[0].iMaxSpatialBitrate =
      encoder_params.iMaxBitrate;
  encoder_params.iTemporalLayerNum = configurations_[i].num_temporal_layers;
  if (encoder_params.iTemporalLayerNum > 1) {
    // iNumRefFrame specifies total number of reference buffers to allocate.
    // For N temporal layers we need at least (N - 1) buffers to store last
    // encoded frames of all reference temporal layers.
    // Note that there is no API in OpenH264 encoder to specify exact set of
    // references to be used to prediction of a given frame. Encoder can
    // theoretically use all available reference buffers.
    encoder_params.iNumRefFrame = encoder_params.iTemporalLayerNum - 1;
  }
  RTC_LOG(LS_INFO) << "OpenH264 version is " << OPENH264_MAJOR << "."
                   << OPENH264_MINOR;
  switch (packetization_mode_) {
    case H264PacketizationMode::SingleNalUnit:
      // Limit the size of the packets produced.
      encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceNum = 1;
      encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceMode =
          SM_SIZELIMITED_SLICE;
      encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceSizeConstraint =
          static_cast<unsigned int>(max_payload_size_);
      RTC_LOG(LS_INFO) << "Encoder is configured with NALU constraint: "
                       << max_payload_size_ << " bytes";
      break;
    case H264PacketizationMode::NonInterleaved:
      // When uiSliceMode = SM_FIXEDSLCNUM_SLICE, uiSliceNum = 0 means auto
      // design it with cpu core number.
      // TODO(sprang): Set to 0 when we understand why the rate controller borks
      //               when uiSliceNum > 1.
      encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceNum = 1;
      encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceMode =
          SM_FIXEDSLCNUM_SLICE;
      break;
  }
  return encoder_params;
}

void H264EncoderImpl::ReportInit() {
  if (has_reported_init_)
    return;
  RTC_HISTOGRAM_ENUMERATION("WebRTC.Video.H264EncoderImpl.Event",
                            kH264EncoderEventInit, kH264EncoderEventMax);
  has_reported_init_ = true;
}

void H264EncoderImpl::ReportError() {
  if (has_reported_error_)
    return;
  RTC_HISTOGRAM_ENUMERATION("WebRTC.Video.H264EncoderImpl.Event",
                            kH264EncoderEventError, kH264EncoderEventMax);
  has_reported_error_ = true;
}

VideoEncoder::EncoderInfo H264EncoderImpl::GetEncoderInfo() const {
  EncoderInfo info;
  info.supports_native_handle = false;
  info.implementation_name = "OpenH264";
  info.scaling_settings =
      VideoEncoder::ScalingSettings(kLowH264QpThreshold, kHighH264QpThreshold);
  info.is_hardware_accelerated = false;
  info.supports_simulcast = true;
  info.preferred_pixel_formats = {VideoFrameBuffer::Type::kI420};
  return info;
}

void H264EncoderImpl::LayerConfig::SetStreamState(bool send_stream) {
  if (send_stream && !sending) {
    // Need a key frame if we have not sent this stream before.
    key_frame_request = true;
  }
  sending = send_stream;
}

}  // namespace webrtc

#endif  // WEBRTC_USE_H264