aboutsummaryrefslogtreecommitdiff
path: root/modules/video_coding/codecs/vp8/screenshare_layers.cc
blob: caccb4246c13affc90382e4f05da2f3b24924f59 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
/* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/video_coding/codecs/vp8/screenshare_layers.h"

#include <stdlib.h>

#include <algorithm>
#include <memory>

#include "modules/video_coding/include/video_codec_interface.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/time_utils.h"
#include "system_wrappers/include/metrics.h"

namespace webrtc {
namespace {
using BufferFlags = Vp8FrameConfig::BufferFlags;

constexpr BufferFlags kNone = Vp8FrameConfig::BufferFlags::kNone;
constexpr BufferFlags kReference = Vp8FrameConfig::BufferFlags::kReference;
constexpr BufferFlags kUpdate = Vp8FrameConfig::BufferFlags::kUpdate;
constexpr BufferFlags kReferenceAndUpdate =
    Vp8FrameConfig::BufferFlags::kReferenceAndUpdate;

constexpr int kOneSecond90Khz = 90000;
constexpr int kMinTimeBetweenSyncs = kOneSecond90Khz * 2;
constexpr int kMaxTimeBetweenSyncs = kOneSecond90Khz * 4;
constexpr int kQpDeltaThresholdForSync = 8;
constexpr int kMinBitrateKbpsForQpBoost = 500;
constexpr auto kSwitch = DecodeTargetIndication::kSwitch;
}  // namespace

const double ScreenshareLayers::kMaxTL0FpsReduction = 2.5;
const double ScreenshareLayers::kAcceptableTargetOvershoot = 2.0;

constexpr int ScreenshareLayers::kMaxNumTemporalLayers;

// Always emit a frame with certain interval, even if bitrate targets have
// been exceeded. This prevents needless keyframe requests.
const int ScreenshareLayers::kMaxFrameIntervalMs = 2750;

ScreenshareLayers::ScreenshareLayers(int num_temporal_layers)
    : number_of_temporal_layers_(
          std::min(kMaxNumTemporalLayers, num_temporal_layers)),
      active_layer_(-1),
      last_timestamp_(-1),
      last_sync_timestamp_(-1),
      last_emitted_tl0_timestamp_(-1),
      last_frame_time_ms_(-1),
      max_debt_bytes_(0),
      encode_framerate_(1000.0f, 1000.0f),  // 1 second window, second scale.
      bitrate_updated_(false),
      checker_(TemporalLayersChecker::CreateTemporalLayersChecker(
          Vp8TemporalLayersType::kBitrateDynamic,
          num_temporal_layers)) {
  RTC_CHECK_GT(number_of_temporal_layers_, 0);
  RTC_CHECK_LE(number_of_temporal_layers_, kMaxNumTemporalLayers);
}

ScreenshareLayers::~ScreenshareLayers() {
  UpdateHistograms();
}

void ScreenshareLayers::SetQpLimits(size_t stream_index,
                                    int min_qp,
                                    int max_qp) {
  RTC_DCHECK_LT(stream_index, StreamCount());
  // 0 < min_qp <= max_qp
  RTC_DCHECK_LT(0, min_qp);
  RTC_DCHECK_LE(min_qp, max_qp);

  RTC_DCHECK_EQ(min_qp_.has_value(), max_qp_.has_value());
  if (!min_qp_.has_value()) {
    min_qp_ = min_qp;
    max_qp_ = max_qp;
  } else {
    RTC_DCHECK_EQ(min_qp, min_qp_.value());
    RTC_DCHECK_EQ(max_qp, max_qp_.value());
  }
}

size_t ScreenshareLayers::StreamCount() const {
  return 1;
}

bool ScreenshareLayers::SupportsEncoderFrameDropping(
    size_t stream_index) const {
  RTC_DCHECK_LT(stream_index, StreamCount());
  // Frame dropping is handled internally by this class.
  return false;
}

Vp8FrameConfig ScreenshareLayers::NextFrameConfig(size_t stream_index,
                                                  uint32_t timestamp) {
  RTC_DCHECK_LT(stream_index, StreamCount());

  auto it = pending_frame_configs_.find(timestamp);
  if (it != pending_frame_configs_.end()) {
    // Drop and re-encode, reuse the previous config.
    return it->second.frame_config;
  }

  if (number_of_temporal_layers_ <= 1) {
    // No flags needed for 1 layer screenshare.
    // TODO(pbos): Consider updating only last, and not all buffers.
    DependencyInfo dependency_info{
        "S", {kReferenceAndUpdate, kReferenceAndUpdate, kReferenceAndUpdate}};
    pending_frame_configs_[timestamp] = dependency_info;
    return dependency_info.frame_config;
  }

  const int64_t now_ms = rtc::TimeMillis();

  int64_t unwrapped_timestamp = time_wrap_handler_.Unwrap(timestamp);
  int64_t ts_diff;
  if (last_timestamp_ == -1) {
    ts_diff = kOneSecond90Khz / capture_framerate_.value_or(*target_framerate_);
  } else {
    ts_diff = unwrapped_timestamp - last_timestamp_;
  }

  if (target_framerate_) {
    // If input frame rate exceeds target frame rate, either over a one second
    // averaging window, or if frame interval is below 90% of desired value,
    // drop frame.
    if (encode_framerate_.Rate(now_ms).value_or(0) > *target_framerate_)
      return Vp8FrameConfig(kNone, kNone, kNone);

    // Primarily check if frame interval is too short using frame timestamps,
    // as if they are correct they won't be affected by queuing in webrtc.
    const int64_t expected_frame_interval_90khz =
        kOneSecond90Khz / *target_framerate_;
    if (last_timestamp_ != -1 && ts_diff > 0) {
      if (ts_diff < 85 * expected_frame_interval_90khz / 100) {
        return Vp8FrameConfig(kNone, kNone, kNone);
      }
    } else {
      // Timestamps looks off, use realtime clock here instead.
      const int64_t expected_frame_interval_ms = 1000 / *target_framerate_;
      if (last_frame_time_ms_ != -1 &&
          now_ms - last_frame_time_ms_ <
              (85 * expected_frame_interval_ms) / 100) {
        return Vp8FrameConfig(kNone, kNone, kNone);
      }
    }
  }

  if (stats_.first_frame_time_ms_ == -1)
    stats_.first_frame_time_ms_ = now_ms;

  // Make sure both frame droppers leak out bits.
  layers_[0].UpdateDebt(ts_diff / 90);
  layers_[1].UpdateDebt(ts_diff / 90);
  last_timestamp_ = timestamp;
  last_frame_time_ms_ = now_ms;

  TemporalLayerState layer_state = TemporalLayerState::kDrop;

  if (active_layer_ == -1 ||
      layers_[active_layer_].state != TemporalLayer::State::kDropped) {
    if (last_emitted_tl0_timestamp_ != -1 &&
        (unwrapped_timestamp - last_emitted_tl0_timestamp_) / 90 >
            kMaxFrameIntervalMs) {
      // Too long time has passed since the last frame was emitted, cancel
      // enough debt to allow a single frame.
      layers_[0].debt_bytes_ = max_debt_bytes_ - 1;
    }
    if (layers_[0].debt_bytes_ > max_debt_bytes_) {
      // Must drop TL0, encode TL1 instead.
      if (layers_[1].debt_bytes_ > max_debt_bytes_) {
        // Must drop both TL0 and TL1.
        active_layer_ = -1;
      } else {
        active_layer_ = 1;
      }
    } else {
      active_layer_ = 0;
    }
  }

  switch (active_layer_) {
    case 0:
      layer_state = TemporalLayerState::kTl0;
      last_emitted_tl0_timestamp_ = unwrapped_timestamp;
      break;
    case 1:
      if (layers_[1].state != TemporalLayer::State::kDropped) {
        if (TimeToSync(unwrapped_timestamp) ||
            layers_[1].state == TemporalLayer::State::kKeyFrame) {
          last_sync_timestamp_ = unwrapped_timestamp;
          layer_state = TemporalLayerState::kTl1Sync;
        } else {
          layer_state = TemporalLayerState::kTl1;
        }
      } else {
        layer_state = last_sync_timestamp_ == unwrapped_timestamp
                          ? TemporalLayerState::kTl1Sync
                          : TemporalLayerState::kTl1;
      }
      break;
    case -1:
      layer_state = TemporalLayerState::kDrop;
      ++stats_.num_dropped_frames_;
      break;
    default:
      RTC_NOTREACHED();
  }

  DependencyInfo dependency_info;
  // TODO(pbos): Consider referencing but not updating the 'alt' buffer for all
  // layers.
  switch (layer_state) {
    case TemporalLayerState::kDrop:
      dependency_info = {"", {kNone, kNone, kNone}};
      break;
    case TemporalLayerState::kTl0:
      // TL0 only references and updates 'last'.
      dependency_info = {"SS", {kReferenceAndUpdate, kNone, kNone}};
      dependency_info.frame_config.packetizer_temporal_idx = 0;
      break;
    case TemporalLayerState::kTl1:
      // TL1 references both 'last' and 'golden' but only updates 'golden'.
      dependency_info = {"-R", {kReference, kReferenceAndUpdate, kNone}};
      dependency_info.frame_config.packetizer_temporal_idx = 1;
      break;
    case TemporalLayerState::kTl1Sync:
      // Predict from only TL0 to allow participants to switch to the high
      // bitrate stream. Updates 'golden' so that TL1 can continue to refer to
      // and update 'golden' from this point on.
      dependency_info = {"-S", {kReference, kUpdate, kNone}};
      dependency_info.frame_config.packetizer_temporal_idx = 1;
      dependency_info.frame_config.layer_sync = true;
      break;
  }

  pending_frame_configs_[timestamp] = dependency_info;
  return dependency_info.frame_config;
}

void ScreenshareLayers::OnRatesUpdated(
    size_t stream_index,
    const std::vector<uint32_t>& bitrates_bps,
    int framerate_fps) {
  RTC_DCHECK_LT(stream_index, StreamCount());
  RTC_DCHECK_GT(framerate_fps, 0);
  RTC_DCHECK_GE(bitrates_bps.size(), 1);
  RTC_DCHECK_LE(bitrates_bps.size(), 2);

  // |bitrates_bps| uses individual rates per layer, but we want to use the
  // accumulated rate here.
  uint32_t tl0_kbps = bitrates_bps[0] / 1000;
  uint32_t tl1_kbps = tl0_kbps;
  if (bitrates_bps.size() > 1) {
    tl1_kbps += bitrates_bps[1] / 1000;
  }

  if (!target_framerate_) {
    // First OnRatesUpdated() is called during construction, with the
    // configured targets as parameters.
    target_framerate_ = framerate_fps;
    capture_framerate_ = target_framerate_;
    bitrate_updated_ = true;
  } else {
    if ((capture_framerate_ &&
         framerate_fps != static_cast<int>(*capture_framerate_)) ||
        (tl0_kbps != layers_[0].target_rate_kbps_) ||
        (tl1_kbps != layers_[1].target_rate_kbps_)) {
      bitrate_updated_ = true;
    }

    if (framerate_fps < 0) {
      capture_framerate_.reset();
    } else {
      capture_framerate_ = framerate_fps;
    }
  }

  layers_[0].target_rate_kbps_ = tl0_kbps;
  layers_[1].target_rate_kbps_ = tl1_kbps;
}

void ScreenshareLayers::OnEncodeDone(size_t stream_index,
                                     uint32_t rtp_timestamp,
                                     size_t size_bytes,
                                     bool is_keyframe,
                                     int qp,
                                     CodecSpecificInfo* info) {
  RTC_DCHECK_LT(stream_index, StreamCount());

  if (size_bytes == 0) {
    RTC_LOG(LS_WARNING) << "Empty frame; treating as dropped.";
    OnFrameDropped(stream_index, rtp_timestamp);
    return;
  }

  absl::optional<DependencyInfo> dependency_info;
  auto it = pending_frame_configs_.find(rtp_timestamp);
  if (it != pending_frame_configs_.end()) {
    dependency_info = it->second;
    pending_frame_configs_.erase(it);

    if (checker_) {
      RTC_DCHECK(checker_->CheckTemporalConfig(is_keyframe,
                                               dependency_info->frame_config));
    }
  }

  CodecSpecificInfoVP8& vp8_info = info->codecSpecific.VP8;
  GenericFrameInfo& generic_frame_info = info->generic_frame_info.emplace();

  if (number_of_temporal_layers_ == 1) {
    vp8_info.temporalIdx = kNoTemporalIdx;
    vp8_info.layerSync = false;
    generic_frame_info.decode_target_indications = {kSwitch};
    generic_frame_info.encoder_buffers.emplace_back(
        0, /*referenced=*/!is_keyframe, /*updated=*/true);
  } else {
    int64_t unwrapped_timestamp = time_wrap_handler_.Unwrap(rtp_timestamp);
    if (dependency_info) {
      vp8_info.temporalIdx =
          dependency_info->frame_config.packetizer_temporal_idx;
      vp8_info.layerSync = dependency_info->frame_config.layer_sync;
      generic_frame_info.decode_target_indications =
          dependency_info->decode_target_indications;
    } else {
      RTC_DCHECK(is_keyframe);
    }

    if (is_keyframe) {
      vp8_info.temporalIdx = 0;
      last_sync_timestamp_ = unwrapped_timestamp;
      vp8_info.layerSync = true;
      layers_[0].state = TemporalLayer::State::kKeyFrame;
      layers_[1].state = TemporalLayer::State::kKeyFrame;
      active_layer_ = 1;
      info->template_structure =
          GetTemplateStructure(number_of_temporal_layers_);
      generic_frame_info.decode_target_indications = {kSwitch, kSwitch};
    } else if (active_layer_ >= 0 && layers_[active_layer_].state ==
                                         TemporalLayer::State::kKeyFrame) {
      layers_[active_layer_].state = TemporalLayer::State::kNormal;
    }

    vp8_info.useExplicitDependencies = true;
    RTC_DCHECK_EQ(vp8_info.referencedBuffersCount, 0u);
    RTC_DCHECK_EQ(vp8_info.updatedBuffersCount, 0u);

    // Note that |frame_config| is not derefernced if |is_keyframe|,
    // meaning it's never dereferenced if the optional may be unset.
    for (int i = 0; i < static_cast<int>(Vp8FrameConfig::Buffer::kCount); ++i) {
      bool references = false;
      bool updates = is_keyframe;
      if (!is_keyframe && dependency_info->frame_config.References(
                              static_cast<Vp8FrameConfig::Buffer>(i))) {
        RTC_DCHECK_LT(vp8_info.referencedBuffersCount,
                      arraysize(CodecSpecificInfoVP8::referencedBuffers));
        references = true;
        vp8_info.referencedBuffers[vp8_info.referencedBuffersCount++] = i;
      }

      if (is_keyframe || dependency_info->frame_config.Updates(
                             static_cast<Vp8FrameConfig::Buffer>(i))) {
        RTC_DCHECK_LT(vp8_info.updatedBuffersCount,
                      arraysize(CodecSpecificInfoVP8::updatedBuffers));
        updates = true;
        vp8_info.updatedBuffers[vp8_info.updatedBuffersCount++] = i;
      }

      if (references || updates)
        generic_frame_info.encoder_buffers.emplace_back(i, references, updates);
    }
  }

  encode_framerate_.Update(1, rtc::TimeMillis());

  if (number_of_temporal_layers_ == 1)
    return;

  RTC_DCHECK_NE(-1, active_layer_);
  if (layers_[active_layer_].state == TemporalLayer::State::kDropped) {
    layers_[active_layer_].state = TemporalLayer::State::kQualityBoost;
  }

  if (qp != -1)
    layers_[active_layer_].last_qp = qp;

  if (active_layer_ == 0) {
    layers_[0].debt_bytes_ += size_bytes;
    layers_[1].debt_bytes_ += size_bytes;
    ++stats_.num_tl0_frames_;
    stats_.tl0_target_bitrate_sum_ += layers_[0].target_rate_kbps_;
    stats_.tl0_qp_sum_ += qp;
  } else if (active_layer_ == 1) {
    layers_[1].debt_bytes_ += size_bytes;
    ++stats_.num_tl1_frames_;
    stats_.tl1_target_bitrate_sum_ += layers_[1].target_rate_kbps_;
    stats_.tl1_qp_sum_ += qp;
  }
}

void ScreenshareLayers::OnFrameDropped(size_t stream_index,
                                       uint32_t rtp_timestamp) {
  layers_[active_layer_].state = TemporalLayer::State::kDropped;
  ++stats_.num_overshoots_;
}

void ScreenshareLayers::OnPacketLossRateUpdate(float packet_loss_rate) {}

void ScreenshareLayers::OnRttUpdate(int64_t rtt_ms) {}

void ScreenshareLayers::OnLossNotification(
    const VideoEncoder::LossNotification& loss_notification) {}

FrameDependencyStructure ScreenshareLayers::GetTemplateStructure(
    int num_layers) const {
  RTC_CHECK_LT(num_layers, 3);
  RTC_CHECK_GT(num_layers, 0);

  FrameDependencyStructure template_structure;
  template_structure.num_decode_targets = num_layers;

  switch (num_layers) {
    case 1: {
      template_structure.templates.resize(2);
      template_structure.templates[0].T(0).Dtis("S");
      template_structure.templates[1].T(0).Dtis("S").FrameDiffs({1});
      return template_structure;
    }
    case 2: {
      template_structure.templates.resize(3);
      template_structure.templates[0].T(0).Dtis("SS");
      template_structure.templates[1].T(0).Dtis("SS").FrameDiffs({1});
      template_structure.templates[2].T(1).Dtis("-S").FrameDiffs({1});
      return template_structure;
    }
    default:
      RTC_NOTREACHED();
      // To make the compiler happy!
      return template_structure;
  }
}

bool ScreenshareLayers::TimeToSync(int64_t timestamp) const {
  RTC_DCHECK_EQ(1, active_layer_);
  RTC_DCHECK_NE(-1, layers_[0].last_qp);
  if (layers_[1].last_qp == -1) {
    // First frame in TL1 should only depend on TL0 since there are no
    // previous frames in TL1.
    return true;
  }

  RTC_DCHECK_NE(-1, last_sync_timestamp_);
  int64_t timestamp_diff = timestamp - last_sync_timestamp_;
  if (timestamp_diff > kMaxTimeBetweenSyncs) {
    // After a certain time, force a sync frame.
    return true;
  } else if (timestamp_diff < kMinTimeBetweenSyncs) {
    // If too soon from previous sync frame, don't issue a new one.
    return false;
  }
  // Issue a sync frame if difference in quality between TL0 and TL1 isn't too
  // large.
  if (layers_[0].last_qp - layers_[1].last_qp < kQpDeltaThresholdForSync)
    return true;
  return false;
}

uint32_t ScreenshareLayers::GetCodecTargetBitrateKbps() const {
  uint32_t target_bitrate_kbps = layers_[0].target_rate_kbps_;

  if (number_of_temporal_layers_ > 1) {
    // Calculate a codec target bitrate. This may be higher than TL0, gaining
    // quality at the expense of frame rate at TL0. Constraints:
    // - TL0 frame rate no less than framerate / kMaxTL0FpsReduction.
    // - Target rate * kAcceptableTargetOvershoot should not exceed TL1 rate.
    target_bitrate_kbps =
        std::min(layers_[0].target_rate_kbps_ * kMaxTL0FpsReduction,
                 layers_[1].target_rate_kbps_ / kAcceptableTargetOvershoot);
  }

  return std::max(layers_[0].target_rate_kbps_, target_bitrate_kbps);
}

Vp8EncoderConfig ScreenshareLayers::UpdateConfiguration(size_t stream_index) {
  RTC_DCHECK_LT(stream_index, StreamCount());
  RTC_DCHECK(min_qp_.has_value());
  RTC_DCHECK(max_qp_.has_value());

  const uint32_t target_bitrate_kbps = GetCodecTargetBitrateKbps();

  // TODO(sprang): We _really_ need to make an overhaul of this class. :(
  // If we're dropping frames in order to meet a target framerate, adjust the
  // bitrate assigned to the encoder so the total average bitrate is correct.
  float encoder_config_bitrate_kbps = target_bitrate_kbps;
  if (target_framerate_ && capture_framerate_ &&
      *target_framerate_ < *capture_framerate_) {
    encoder_config_bitrate_kbps *=
        static_cast<float>(*capture_framerate_) / *target_framerate_;
  }

  if (bitrate_updated_ ||
      encoder_config_.rc_target_bitrate !=
          absl::make_optional(encoder_config_bitrate_kbps)) {
    encoder_config_.rc_target_bitrate = encoder_config_bitrate_kbps;

    // Don't reconfigure qp limits during quality boost frames.
    if (active_layer_ == -1 ||
        layers_[active_layer_].state != TemporalLayer::State::kQualityBoost) {
      const int min_qp = min_qp_.value();
      const int max_qp = max_qp_.value();

      // After a dropped frame, a frame with max qp will be encoded and the
      // quality will then ramp up from there. To boost the speed of recovery,
      // encode the next frame with lower max qp, if there is sufficient
      // bandwidth to do so without causing excessive delay.
      // TL0 is the most important to improve since the errors in this layer
      // will propagate to TL1.
      // Currently, reduce max qp by 20% for TL0 and 15% for TL1.
      if (layers_[1].target_rate_kbps_ >= kMinBitrateKbpsForQpBoost) {
        layers_[0].enhanced_max_qp = min_qp + (((max_qp - min_qp) * 80) / 100);
        layers_[1].enhanced_max_qp = min_qp + (((max_qp - min_qp) * 85) / 100);
      } else {
        layers_[0].enhanced_max_qp = -1;
        layers_[1].enhanced_max_qp = -1;
      }
    }

    if (capture_framerate_) {
      int avg_frame_size =
          (target_bitrate_kbps * 1000) / (8 * *capture_framerate_);
      // Allow max debt to be the size of a single optimal frame.
      // TODO(sprang): Determine if this needs to be adjusted by some factor.
      // (Lower values may cause more frame drops, higher may lead to queuing
      // delays.)
      max_debt_bytes_ = avg_frame_size;
    }

    bitrate_updated_ = false;
  }

  // Don't try to update boosts state if not active yet.
  if (active_layer_ == -1)
    return encoder_config_;

  if (number_of_temporal_layers_ <= 1)
    return encoder_config_;

  // If layer is in the quality boost state (following a dropped frame), update
  // the configuration with the adjusted (lower) qp and set the state back to
  // normal.
  unsigned int adjusted_max_qp = max_qp_.value();  // Set the normal max qp.
  if (layers_[active_layer_].state == TemporalLayer::State::kQualityBoost) {
    if (layers_[active_layer_].enhanced_max_qp != -1) {
      // Bitrate is high enough for quality boost, update max qp.
      adjusted_max_qp = layers_[active_layer_].enhanced_max_qp;
    }
    // Regardless of qp, reset the boost state for the next frame.
    layers_[active_layer_].state = TemporalLayer::State::kNormal;
  }
  encoder_config_.rc_max_quantizer = adjusted_max_qp;

  return encoder_config_;
}

void ScreenshareLayers::TemporalLayer::UpdateDebt(int64_t delta_ms) {
  uint32_t debt_reduction_bytes = target_rate_kbps_ * delta_ms / 8;
  if (debt_reduction_bytes >= debt_bytes_) {
    debt_bytes_ = 0;
  } else {
    debt_bytes_ -= debt_reduction_bytes;
  }
}

void ScreenshareLayers::UpdateHistograms() {
  if (stats_.first_frame_time_ms_ == -1)
    return;
  int64_t duration_sec =
      (rtc::TimeMillis() - stats_.first_frame_time_ms_ + 500) / 1000;
  if (duration_sec >= metrics::kMinRunTimeInSeconds) {
    RTC_HISTOGRAM_COUNTS_10000(
        "WebRTC.Video.Screenshare.Layer0.FrameRate",
        (stats_.num_tl0_frames_ + (duration_sec / 2)) / duration_sec);
    RTC_HISTOGRAM_COUNTS_10000(
        "WebRTC.Video.Screenshare.Layer1.FrameRate",
        (stats_.num_tl1_frames_ + (duration_sec / 2)) / duration_sec);
    int total_frames = stats_.num_tl0_frames_ + stats_.num_tl1_frames_;
    RTC_HISTOGRAM_COUNTS_10000(
        "WebRTC.Video.Screenshare.FramesPerDrop",
        (stats_.num_dropped_frames_ == 0
             ? 0
             : total_frames / stats_.num_dropped_frames_));
    RTC_HISTOGRAM_COUNTS_10000(
        "WebRTC.Video.Screenshare.FramesPerOvershoot",
        (stats_.num_overshoots_ == 0 ? 0
                                     : total_frames / stats_.num_overshoots_));
    if (stats_.num_tl0_frames_ > 0) {
      RTC_HISTOGRAM_COUNTS_10000("WebRTC.Video.Screenshare.Layer0.Qp",
                                 stats_.tl0_qp_sum_ / stats_.num_tl0_frames_);
      RTC_HISTOGRAM_COUNTS_10000(
          "WebRTC.Video.Screenshare.Layer0.TargetBitrate",
          stats_.tl0_target_bitrate_sum_ / stats_.num_tl0_frames_);
    }
    if (stats_.num_tl1_frames_ > 0) {
      RTC_HISTOGRAM_COUNTS_10000("WebRTC.Video.Screenshare.Layer1.Qp",
                                 stats_.tl1_qp_sum_ / stats_.num_tl1_frames_);
      RTC_HISTOGRAM_COUNTS_10000(
          "WebRTC.Video.Screenshare.Layer1.TargetBitrate",
          stats_.tl1_target_bitrate_sum_ / stats_.num_tl1_frames_);
    }
  }
}
}  // namespace webrtc