aboutsummaryrefslogtreecommitdiff
path: root/modules/video_coding/packet_buffer.cc
blob: c98ae003895601cfc9f925701a9d81a65f8e10f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
/*
 *  Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/video_coding/packet_buffer.h"

#include <string.h>

#include <algorithm>
#include <cstdint>
#include <limits>
#include <utility>
#include <vector>

#include "absl/types/variant.h"
#include "api/array_view.h"
#include "api/rtp_packet_info.h"
#include "api/video/video_frame_type.h"
#include "common_video/h264/h264_common.h"
#include "modules/rtp_rtcp/source/rtp_header_extensions.h"
#include "modules/rtp_rtcp/source/rtp_packet_received.h"
#include "modules/rtp_rtcp/source/rtp_video_header.h"
#include "modules/video_coding/codecs/h264/include/h264_globals.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/mod_ops.h"

namespace webrtc {
namespace video_coding {

PacketBuffer::Packet::Packet(const RtpPacketReceived& rtp_packet,
                             const RTPVideoHeader& video_header)
    : marker_bit(rtp_packet.Marker()),
      payload_type(rtp_packet.PayloadType()),
      seq_num(rtp_packet.SequenceNumber()),
      timestamp(rtp_packet.Timestamp()),
      times_nacked(-1),
      video_header(video_header) {}

PacketBuffer::PacketBuffer(size_t start_buffer_size, size_t max_buffer_size)
    : max_size_(max_buffer_size),
      first_seq_num_(0),
      first_packet_received_(false),
      is_cleared_to_first_seq_num_(false),
      buffer_(start_buffer_size),
      sps_pps_idr_is_h264_keyframe_(false) {
  RTC_DCHECK_LE(start_buffer_size, max_buffer_size);
  // Buffer size must always be a power of 2.
  RTC_DCHECK((start_buffer_size & (start_buffer_size - 1)) == 0);
  RTC_DCHECK((max_buffer_size & (max_buffer_size - 1)) == 0);
}

PacketBuffer::~PacketBuffer() {
  Clear();
}

PacketBuffer::InsertResult PacketBuffer::InsertPacket(
    std::unique_ptr<PacketBuffer::Packet> packet) {
  PacketBuffer::InsertResult result;

  uint16_t seq_num = packet->seq_num;
  size_t index = seq_num % buffer_.size();

  if (!first_packet_received_) {
    first_seq_num_ = seq_num;
    first_packet_received_ = true;
  } else if (AheadOf(first_seq_num_, seq_num)) {
    // If we have explicitly cleared past this packet then it's old,
    // don't insert it, just silently ignore it.
    if (is_cleared_to_first_seq_num_) {
      return result;
    }

    first_seq_num_ = seq_num;
  }

  if (buffer_[index] != nullptr) {
    // Duplicate packet, just delete the payload.
    if (buffer_[index]->seq_num == packet->seq_num) {
      return result;
    }

    // The packet buffer is full, try to expand the buffer.
    while (ExpandBufferSize() && buffer_[seq_num % buffer_.size()] != nullptr) {
    }
    index = seq_num % buffer_.size();

    // Packet buffer is still full since we were unable to expand the buffer.
    if (buffer_[index] != nullptr) {
      // Clear the buffer, delete payload, and return false to signal that a
      // new keyframe is needed.
      RTC_LOG(LS_WARNING) << "Clear PacketBuffer and request key frame.";
      ClearInternal();
      result.buffer_cleared = true;
      return result;
    }
  }

  packet->continuous = false;
  buffer_[index] = std::move(packet);

  UpdateMissingPackets(seq_num);

  result.packets = FindFrames(seq_num);
  return result;
}

void PacketBuffer::ClearTo(uint16_t seq_num) {
  // We have already cleared past this sequence number, no need to do anything.
  if (is_cleared_to_first_seq_num_ &&
      AheadOf<uint16_t>(first_seq_num_, seq_num)) {
    return;
  }

  // If the packet buffer was cleared between a frame was created and returned.
  if (!first_packet_received_)
    return;

  // Avoid iterating over the buffer more than once by capping the number of
  // iterations to the |size_| of the buffer.
  ++seq_num;
  size_t diff = ForwardDiff<uint16_t>(first_seq_num_, seq_num);
  size_t iterations = std::min(diff, buffer_.size());
  for (size_t i = 0; i < iterations; ++i) {
    auto& stored = buffer_[first_seq_num_ % buffer_.size()];
    if (stored != nullptr && AheadOf<uint16_t>(seq_num, stored->seq_num)) {
      stored = nullptr;
    }
    ++first_seq_num_;
  }

  // If |diff| is larger than |iterations| it means that we don't increment
  // |first_seq_num_| until we reach |seq_num|, so we set it here.
  first_seq_num_ = seq_num;

  is_cleared_to_first_seq_num_ = true;
  auto clear_to_it = missing_packets_.upper_bound(seq_num);
  if (clear_to_it != missing_packets_.begin()) {
    --clear_to_it;
    missing_packets_.erase(missing_packets_.begin(), clear_to_it);
  }
}

void PacketBuffer::Clear() {
  ClearInternal();
}

PacketBuffer::InsertResult PacketBuffer::InsertPadding(uint16_t seq_num) {
  PacketBuffer::InsertResult result;
  UpdateMissingPackets(seq_num);
  result.packets = FindFrames(static_cast<uint16_t>(seq_num + 1));
  return result;
}

void PacketBuffer::ForceSpsPpsIdrIsH264Keyframe() {
  sps_pps_idr_is_h264_keyframe_ = true;
}

void PacketBuffer::ClearInternal() {
  for (auto& entry : buffer_) {
    entry = nullptr;
  }

  first_packet_received_ = false;
  is_cleared_to_first_seq_num_ = false;
  newest_inserted_seq_num_.reset();
  missing_packets_.clear();
}

bool PacketBuffer::ExpandBufferSize() {
  if (buffer_.size() == max_size_) {
    RTC_LOG(LS_WARNING) << "PacketBuffer is already at max size (" << max_size_
                        << "), failed to increase size.";
    return false;
  }

  size_t new_size = std::min(max_size_, 2 * buffer_.size());
  std::vector<std::unique_ptr<Packet>> new_buffer(new_size);
  for (std::unique_ptr<Packet>& entry : buffer_) {
    if (entry != nullptr) {
      new_buffer[entry->seq_num % new_size] = std::move(entry);
    }
  }
  buffer_ = std::move(new_buffer);
  RTC_LOG(LS_INFO) << "PacketBuffer size expanded to " << new_size;
  return true;
}

bool PacketBuffer::PotentialNewFrame(uint16_t seq_num) const {
  size_t index = seq_num % buffer_.size();
  int prev_index = index > 0 ? index - 1 : buffer_.size() - 1;
  const auto& entry = buffer_[index];
  const auto& prev_entry = buffer_[prev_index];

  if (entry == nullptr)
    return false;
  if (entry->seq_num != seq_num)
    return false;
  if (entry->is_first_packet_in_frame())
    return true;
  if (prev_entry == nullptr)
    return false;
  if (prev_entry->seq_num != static_cast<uint16_t>(entry->seq_num - 1))
    return false;
  if (prev_entry->timestamp != entry->timestamp)
    return false;
  if (prev_entry->continuous)
    return true;

  return false;
}

std::vector<std::unique_ptr<PacketBuffer::Packet>> PacketBuffer::FindFrames(
    uint16_t seq_num) {
  std::vector<std::unique_ptr<PacketBuffer::Packet>> found_frames;
  for (size_t i = 0; i < buffer_.size() && PotentialNewFrame(seq_num); ++i) {
    size_t index = seq_num % buffer_.size();
    buffer_[index]->continuous = true;

    // If all packets of the frame is continuous, find the first packet of the
    // frame and add all packets of the frame to the returned packets.
    if (buffer_[index]->is_last_packet_in_frame()) {
      uint16_t start_seq_num = seq_num;

      // Find the start index by searching backward until the packet with
      // the |frame_begin| flag is set.
      int start_index = index;
      size_t tested_packets = 0;
      int64_t frame_timestamp = buffer_[start_index]->timestamp;

      // Identify H.264 keyframes by means of SPS, PPS, and IDR.
      bool is_h264 = buffer_[start_index]->codec() == kVideoCodecH264;
      bool has_h264_sps = false;
      bool has_h264_pps = false;
      bool has_h264_idr = false;
      bool is_h264_keyframe = false;
      int idr_width = -1;
      int idr_height = -1;
      while (true) {
        ++tested_packets;

        if (!is_h264 && buffer_[start_index]->is_first_packet_in_frame())
          break;

        if (is_h264) {
          const auto* h264_header = absl::get_if<RTPVideoHeaderH264>(
              &buffer_[start_index]->video_header.video_type_header);
          if (!h264_header || h264_header->nalus_length >= kMaxNalusPerPacket)
            return found_frames;

          for (size_t j = 0; j < h264_header->nalus_length; ++j) {
            if (h264_header->nalus[j].type == H264::NaluType::kSps) {
              has_h264_sps = true;
            } else if (h264_header->nalus[j].type == H264::NaluType::kPps) {
              has_h264_pps = true;
            } else if (h264_header->nalus[j].type == H264::NaluType::kIdr) {
              has_h264_idr = true;
            }
          }
          if ((sps_pps_idr_is_h264_keyframe_ && has_h264_idr && has_h264_sps &&
               has_h264_pps) ||
              (!sps_pps_idr_is_h264_keyframe_ && has_h264_idr)) {
            is_h264_keyframe = true;
            // Store the resolution of key frame which is the packet with
            // smallest index and valid resolution; typically its IDR or SPS
            // packet; there may be packet preceeding this packet, IDR's
            // resolution will be applied to them.
            if (buffer_[start_index]->width() > 0 &&
                buffer_[start_index]->height() > 0) {
              idr_width = buffer_[start_index]->width();
              idr_height = buffer_[start_index]->height();
            }
          }
        }

        if (tested_packets == buffer_.size())
          break;

        start_index = start_index > 0 ? start_index - 1 : buffer_.size() - 1;

        // In the case of H264 we don't have a frame_begin bit (yes,
        // |frame_begin| might be set to true but that is a lie). So instead
        // we traverese backwards as long as we have a previous packet and
        // the timestamp of that packet is the same as this one. This may cause
        // the PacketBuffer to hand out incomplete frames.
        // See: https://bugs.chromium.org/p/webrtc/issues/detail?id=7106
        if (is_h264 && (buffer_[start_index] == nullptr ||
                        buffer_[start_index]->timestamp != frame_timestamp)) {
          break;
        }

        --start_seq_num;
      }

      if (is_h264) {
        // Warn if this is an unsafe frame.
        if (has_h264_idr && (!has_h264_sps || !has_h264_pps)) {
          RTC_LOG(LS_WARNING)
              << "Received H.264-IDR frame "
                 "(SPS: "
              << has_h264_sps << ", PPS: " << has_h264_pps << "). Treating as "
              << (sps_pps_idr_is_h264_keyframe_ ? "delta" : "key")
              << " frame since WebRTC-SpsPpsIdrIsH264Keyframe is "
              << (sps_pps_idr_is_h264_keyframe_ ? "enabled." : "disabled");
        }

        // Now that we have decided whether to treat this frame as a key frame
        // or delta frame in the frame buffer, we update the field that
        // determines if the RtpFrameObject is a key frame or delta frame.
        const size_t first_packet_index = start_seq_num % buffer_.size();
        if (is_h264_keyframe) {
          buffer_[first_packet_index]->video_header.frame_type =
              VideoFrameType::kVideoFrameKey;
          if (idr_width > 0 && idr_height > 0) {
            // IDR frame was finalized and we have the correct resolution for
            // IDR; update first packet to have same resolution as IDR.
            buffer_[first_packet_index]->video_header.width = idr_width;
            buffer_[first_packet_index]->video_header.height = idr_height;
          }
        } else {
          buffer_[first_packet_index]->video_header.frame_type =
              VideoFrameType::kVideoFrameDelta;
        }

        // If this is not a keyframe, make sure there are no gaps in the packet
        // sequence numbers up until this point.
        if (!is_h264_keyframe && missing_packets_.upper_bound(start_seq_num) !=
                                     missing_packets_.begin()) {
          return found_frames;
        }
      }

      const uint16_t end_seq_num = seq_num + 1;
      // Use uint16_t type to handle sequence number wrap around case.
      uint16_t num_packets = end_seq_num - start_seq_num;
      found_frames.reserve(found_frames.size() + num_packets);
      for (uint16_t i = start_seq_num; i != end_seq_num; ++i) {
        std::unique_ptr<Packet>& packet = buffer_[i % buffer_.size()];
        RTC_DCHECK(packet);
        RTC_DCHECK_EQ(i, packet->seq_num);
        // Ensure frame boundary flags are properly set.
        packet->video_header.is_first_packet_in_frame = (i == start_seq_num);
        packet->video_header.is_last_packet_in_frame = (i == seq_num);
        found_frames.push_back(std::move(packet));
      }

      missing_packets_.erase(missing_packets_.begin(),
                             missing_packets_.upper_bound(seq_num));
    }
    ++seq_num;
  }
  return found_frames;
}

void PacketBuffer::UpdateMissingPackets(uint16_t seq_num) {
  if (!newest_inserted_seq_num_)
    newest_inserted_seq_num_ = seq_num;

  const int kMaxPaddingAge = 1000;
  if (AheadOf(seq_num, *newest_inserted_seq_num_)) {
    uint16_t old_seq_num = seq_num - kMaxPaddingAge;
    auto erase_to = missing_packets_.lower_bound(old_seq_num);
    missing_packets_.erase(missing_packets_.begin(), erase_to);

    // Guard against inserting a large amount of missing packets if there is a
    // jump in the sequence number.
    if (AheadOf(old_seq_num, *newest_inserted_seq_num_))
      *newest_inserted_seq_num_ = old_seq_num;

    ++*newest_inserted_seq_num_;
    while (AheadOf(seq_num, *newest_inserted_seq_num_)) {
      missing_packets_.insert(*newest_inserted_seq_num_);
      ++*newest_inserted_seq_num_;
    }
  } else {
    missing_packets_.erase(seq_num);
  }
}

}  // namespace video_coding
}  // namespace webrtc