aboutsummaryrefslogtreecommitdiff
path: root/modules/video_coding/svc/scalability_structure_simulcast.cc
blob: c236066736369a674314d81c666e31d86d94d267 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
/*
 *  Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "modules/video_coding/svc/scalability_structure_simulcast.h"

#include <utility>
#include <vector>

#include "absl/base/macros.h"
#include "api/transport/rtp/dependency_descriptor.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"

namespace webrtc {
namespace {

DecodeTargetIndication
Dti(int sid, int tid, const ScalableVideoController::LayerFrameConfig& config) {
  if (sid != config.SpatialId() || tid < config.TemporalId()) {
    return DecodeTargetIndication::kNotPresent;
  }
  if (tid == 0) {
    RTC_DCHECK_EQ(config.TemporalId(), 0);
    return DecodeTargetIndication::kSwitch;
  }
  if (tid == config.TemporalId()) {
    return DecodeTargetIndication::kDiscardable;
  }
  RTC_DCHECK_GT(tid, config.TemporalId());
  return DecodeTargetIndication::kSwitch;
}

}  // namespace

constexpr int ScalabilityStructureSimulcast::kMaxNumSpatialLayers;
constexpr int ScalabilityStructureSimulcast::kMaxNumTemporalLayers;

ScalabilityStructureSimulcast::ScalabilityStructureSimulcast(
    int num_spatial_layers,
    int num_temporal_layers)
    : num_spatial_layers_(num_spatial_layers),
      num_temporal_layers_(num_temporal_layers),
      active_decode_targets_(
          (uint32_t{1} << (num_spatial_layers * num_temporal_layers)) - 1) {
  RTC_DCHECK_LE(num_spatial_layers, kMaxNumSpatialLayers);
  RTC_DCHECK_LE(num_temporal_layers, kMaxNumTemporalLayers);
}

ScalabilityStructureSimulcast::~ScalabilityStructureSimulcast() = default;

ScalableVideoController::StreamLayersConfig
ScalabilityStructureSimulcast::StreamConfig() const {
  StreamLayersConfig result;
  result.num_spatial_layers = num_spatial_layers_;
  result.num_temporal_layers = num_temporal_layers_;
  result.scaling_factor_num[num_spatial_layers_ - 1] = 1;
  result.scaling_factor_den[num_spatial_layers_ - 1] = 1;
  for (int sid = num_spatial_layers_ - 1; sid > 0; --sid) {
    result.scaling_factor_num[sid - 1] = 1;
    result.scaling_factor_den[sid - 1] = 2 * result.scaling_factor_den[sid];
  }
  return result;
}

bool ScalabilityStructureSimulcast::TemporalLayerIsActive(int tid) const {
  if (tid >= num_temporal_layers_) {
    return false;
  }
  for (int sid = 0; sid < num_spatial_layers_; ++sid) {
    if (DecodeTargetIsActive(sid, tid)) {
      return true;
    }
  }
  return false;
}

ScalabilityStructureSimulcast::FramePattern
ScalabilityStructureSimulcast::NextPattern() const {
  switch (last_pattern_) {
    case kNone:
    case kDeltaT2B:
      return kDeltaT0;
    case kDeltaT2A:
      if (TemporalLayerIsActive(1)) {
        return kDeltaT1;
      }
      return kDeltaT0;
    case kDeltaT1:
      if (TemporalLayerIsActive(2)) {
        return kDeltaT2B;
      }
      return kDeltaT0;
    case kDeltaT0:
      if (TemporalLayerIsActive(2)) {
        return kDeltaT2A;
      }
      if (TemporalLayerIsActive(1)) {
        return kDeltaT1;
      }
      return kDeltaT0;
  }
  RTC_NOTREACHED();
  return kDeltaT0;
}

std::vector<ScalableVideoController::LayerFrameConfig>
ScalabilityStructureSimulcast::NextFrameConfig(bool restart) {
  std::vector<LayerFrameConfig> configs;
  if (active_decode_targets_.none()) {
    last_pattern_ = kNone;
    return configs;
  }
  configs.reserve(num_spatial_layers_);

  if (last_pattern_ == kNone || restart) {
    can_reference_t0_frame_for_spatial_id_.reset();
    last_pattern_ = kNone;
  }
  FramePattern current_pattern = NextPattern();

  switch (current_pattern) {
    case kDeltaT0:
      // Disallow temporal references cross T0 on higher temporal layers.
      can_reference_t1_frame_for_spatial_id_.reset();
      for (int sid = 0; sid < num_spatial_layers_; ++sid) {
        if (!DecodeTargetIsActive(sid, /*tid=*/0)) {
          // Next frame from the spatial layer `sid` shouldn't depend on
          // potentially old previous frame from the spatial layer `sid`.
          can_reference_t0_frame_for_spatial_id_.reset(sid);
          continue;
        }
        configs.emplace_back();
        ScalableVideoController::LayerFrameConfig& config = configs.back();
        config.Id(current_pattern).S(sid).T(0);

        if (can_reference_t0_frame_for_spatial_id_[sid]) {
          config.ReferenceAndUpdate(BufferIndex(sid, /*tid=*/0));
        } else {
          config.Keyframe().Update(BufferIndex(sid, /*tid=*/0));
        }
        can_reference_t0_frame_for_spatial_id_.set(sid);
      }
      break;
    case kDeltaT1:
      for (int sid = 0; sid < num_spatial_layers_; ++sid) {
        if (!DecodeTargetIsActive(sid, /*tid=*/1) ||
            !can_reference_t0_frame_for_spatial_id_[sid]) {
          continue;
        }
        configs.emplace_back();
        ScalableVideoController::LayerFrameConfig& config = configs.back();
        config.Id(current_pattern)
            .S(sid)
            .T(1)
            .Reference(BufferIndex(sid, /*tid=*/0));
        // Save frame only if there is a higher temporal layer that may need it.
        if (num_temporal_layers_ > 2) {
          config.Update(BufferIndex(sid, /*tid=*/1));
        }
      }
      break;
    case kDeltaT2A:
    case kDeltaT2B:
      for (int sid = 0; sid < num_spatial_layers_; ++sid) {
        if (!DecodeTargetIsActive(sid, /*tid=*/2) ||
            !can_reference_t0_frame_for_spatial_id_[sid]) {
          continue;
        }
        configs.emplace_back();
        ScalableVideoController::LayerFrameConfig& config = configs.back();
        config.Id(current_pattern).S(sid).T(2);
        if (can_reference_t1_frame_for_spatial_id_[sid]) {
          config.Reference(BufferIndex(sid, /*tid=*/1));
        } else {
          config.Reference(BufferIndex(sid, /*tid=*/0));
        }
      }
      break;
    case kNone:
      RTC_NOTREACHED();
      break;
  }

  return configs;
}

GenericFrameInfo ScalabilityStructureSimulcast::OnEncodeDone(
    const LayerFrameConfig& config) {
  last_pattern_ = static_cast<FramePattern>(config.Id());
  if (config.TemporalId() == 1) {
    can_reference_t1_frame_for_spatial_id_.set(config.SpatialId());
  }
  GenericFrameInfo frame_info;
  frame_info.spatial_id = config.SpatialId();
  frame_info.temporal_id = config.TemporalId();
  frame_info.encoder_buffers = config.Buffers();
  frame_info.decode_target_indications.reserve(num_spatial_layers_ *
                                               num_temporal_layers_);
  for (int sid = 0; sid < num_spatial_layers_; ++sid) {
    for (int tid = 0; tid < num_temporal_layers_; ++tid) {
      frame_info.decode_target_indications.push_back(Dti(sid, tid, config));
    }
  }
  frame_info.part_of_chain.assign(num_spatial_layers_, false);
  if (config.TemporalId() == 0) {
    frame_info.part_of_chain[config.SpatialId()] = true;
  }
  frame_info.active_decode_targets = active_decode_targets_;
  return frame_info;
}

void ScalabilityStructureSimulcast::OnRatesUpdated(
    const VideoBitrateAllocation& bitrates) {
  for (int sid = 0; sid < num_spatial_layers_; ++sid) {
    // Enable/disable spatial layers independetely.
    bool active = true;
    for (int tid = 0; tid < num_temporal_layers_; ++tid) {
      // To enable temporal layer, require bitrates for lower temporal layers.
      active = active && bitrates.GetBitrate(sid, tid) > 0;
      SetDecodeTargetIsActive(sid, tid, active);
    }
  }
}

FrameDependencyStructure ScalabilityStructureS2T1::DependencyStructure() const {
  FrameDependencyStructure structure;
  structure.num_decode_targets = 2;
  structure.num_chains = 2;
  structure.decode_target_protected_by_chain = {0, 1};
  structure.templates.resize(4);
  structure.templates[0].S(0).Dtis("S-").ChainDiffs({2, 1}).FrameDiffs({2});
  structure.templates[1].S(0).Dtis("S-").ChainDiffs({0, 0});
  structure.templates[2].S(1).Dtis("-S").ChainDiffs({1, 2}).FrameDiffs({2});
  structure.templates[3].S(1).Dtis("-S").ChainDiffs({1, 0});
  return structure;
}

FrameDependencyStructure ScalabilityStructureS3T3::DependencyStructure() const {
  FrameDependencyStructure structure;
  structure.num_decode_targets = 9;
  structure.num_chains = 3;
  structure.decode_target_protected_by_chain = {0, 0, 0, 1, 1, 1, 2, 2, 2};
  auto& t = structure.templates;
  t.resize(15);
  // Templates are shown in the order frames following them appear in the
  // stream, but in `structure.templates` array templates are sorted by
  // (`spatial_id`, `temporal_id`) since that is a dependency descriptor
  // requirement. Indexes are written in hex for nicer alignment.
  t[0x1].S(0).T(0).Dtis("SSS------").ChainDiffs({0, 0, 0});
  t[0x6].S(1).T(0).Dtis("---SSS---").ChainDiffs({1, 0, 0});
  t[0xB].S(2).T(0).Dtis("------SSS").ChainDiffs({2, 1, 0});
  t[0x3].S(0).T(2).Dtis("--D------").ChainDiffs({3, 2, 1}).FrameDiffs({3});
  t[0x8].S(1).T(2).Dtis("-----D---").ChainDiffs({4, 3, 2}).FrameDiffs({3});
  t[0xD].S(2).T(2).Dtis("--------D").ChainDiffs({5, 4, 3}).FrameDiffs({3});
  t[0x2].S(0).T(1).Dtis("-DS------").ChainDiffs({6, 5, 4}).FrameDiffs({6});
  t[0x7].S(1).T(1).Dtis("----DS---").ChainDiffs({7, 6, 5}).FrameDiffs({6});
  t[0xC].S(2).T(1).Dtis("-------DS").ChainDiffs({8, 7, 6}).FrameDiffs({6});
  t[0x4].S(0).T(2).Dtis("--D------").ChainDiffs({9, 8, 7}).FrameDiffs({3});
  t[0x9].S(1).T(2).Dtis("-----D---").ChainDiffs({10, 9, 8}).FrameDiffs({3});
  t[0xE].S(2).T(2).Dtis("--------D").ChainDiffs({11, 10, 9}).FrameDiffs({3});
  t[0x0].S(0).T(0).Dtis("SSS------").ChainDiffs({12, 11, 10}).FrameDiffs({12});
  t[0x5].S(1).T(0).Dtis("---SSS---").ChainDiffs({1, 12, 11}).FrameDiffs({12});
  t[0xA].S(2).T(0).Dtis("------SSS").ChainDiffs({2, 1, 12}).FrameDiffs({12});
  return structure;
}

}  // namespace webrtc