aboutsummaryrefslogtreecommitdiff
path: root/net/dcsctp/rx/data_tracker.cc
blob: 3e03dfece2a6b340405eba7d3167087366db32e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
/*
 *  Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "net/dcsctp/rx/data_tracker.h"

#include <cstdint>
#include <iterator>
#include <set>
#include <string>
#include <utility>
#include <vector>

#include "absl/strings/string_view.h"
#include "absl/types/optional.h"
#include "net/dcsctp/common/sequence_numbers.h"
#include "net/dcsctp/packet/chunk/sack_chunk.h"
#include "net/dcsctp/timer/timer.h"
#include "rtc_base/logging.h"
#include "rtc_base/strings/string_builder.h"

namespace dcsctp {

bool DataTracker::IsTSNValid(TSN tsn) const {
  UnwrappedTSN unwrapped_tsn = tsn_unwrapper_.PeekUnwrap(tsn);

  // Note that this method doesn't return `false` for old DATA chunks, as those
  // are actually valid, and receiving those may affect the generated SACK
  // response (by setting "duplicate TSNs").

  uint32_t difference =
      UnwrappedTSN::Difference(unwrapped_tsn, last_cumulative_acked_tsn_);
  if (difference > kMaxAcceptedOutstandingFragments) {
    return false;
  }
  return true;
}

void DataTracker::Observe(TSN tsn,
                          AnyDataChunk::ImmediateAckFlag immediate_ack) {
  UnwrappedTSN unwrapped_tsn = tsn_unwrapper_.Unwrap(tsn);

  // IsTSNValid must be called prior to calling this method.
  RTC_DCHECK(
      UnwrappedTSN::Difference(unwrapped_tsn, last_cumulative_acked_tsn_) <=
      kMaxAcceptedOutstandingFragments);

  // Old chunk already seen before?
  if (unwrapped_tsn <= last_cumulative_acked_tsn_) {
    // TODO(boivie) Set duplicate TSN, even if it's not used in SCTP yet.
    return;
  }

  if (unwrapped_tsn == last_cumulative_acked_tsn_.next_value()) {
    last_cumulative_acked_tsn_ = unwrapped_tsn;
    // The cumulative acked tsn may be moved even further, if a gap was filled.
    while (!additional_tsns_.empty() &&
           *additional_tsns_.begin() ==
               last_cumulative_acked_tsn_.next_value()) {
      last_cumulative_acked_tsn_.Increment();
      additional_tsns_.erase(additional_tsns_.begin());
    }
  } else {
    additional_tsns_.insert(unwrapped_tsn);
  }

  // https://tools.ietf.org/html/rfc4960#section-6.7
  // "Upon the reception of a new DATA chunk, an endpoint shall examine the
  // continuity of the TSNs received.  If the endpoint detects a gap in
  // the received DATA chunk sequence, it SHOULD send a SACK with Gap Ack
  // Blocks immediately.  The data receiver continues sending a SACK after
  // receipt of each SCTP packet that doesn't fill the gap."
  if (!additional_tsns_.empty()) {
    UpdateAckState(AckState::kImmediate, "packet loss");
  }

  // https://tools.ietf.org/html/rfc7053#section-5.2
  // "Upon receipt of an SCTP packet containing a DATA chunk with the I
  // bit set, the receiver SHOULD NOT delay the sending of the corresponding
  // SACK chunk, i.e., the receiver SHOULD immediately respond with the
  // corresponding SACK chunk."
  if (*immediate_ack) {
    UpdateAckState(AckState::kImmediate, "immediate-ack bit set");
  }

  if (!seen_packet_) {
    // https://tools.ietf.org/html/rfc4960#section-5.1
    // "After the reception of the first DATA chunk in an association the
    // endpoint MUST immediately respond with a SACK to acknowledge the DATA
    // chunk."
    seen_packet_ = true;
    UpdateAckState(AckState::kImmediate, "first DATA chunk");
  }

  // https://tools.ietf.org/html/rfc4960#section-6.2
  // "Specifically, an acknowledgement SHOULD be generated for at least
  // every second packet (not every second DATA chunk) received, and SHOULD be
  // generated within 200 ms of the arrival of any unacknowledged DATA chunk."
  if (ack_state_ == AckState::kIdle) {
    UpdateAckState(AckState::kBecomingDelayed, "received DATA when idle");
  } else if (ack_state_ == AckState::kDelayed) {
    UpdateAckState(AckState::kImmediate, "received DATA when already delayed");
  }
}

void DataTracker::HandleForwardTsn(TSN new_cumulative_ack) {
  // ForwardTSN is sent to make the receiver (this socket) "forget" about partly
  // received (or not received at all) data, up until `new_cumulative_ack`.

  UnwrappedTSN unwrapped_tsn = tsn_unwrapper_.Unwrap(new_cumulative_ack);
  UnwrappedTSN prev_last_cum_ack_tsn = last_cumulative_acked_tsn_;

  // Old chunk already seen before?
  if (unwrapped_tsn <= last_cumulative_acked_tsn_) {
    // https://tools.ietf.org/html/rfc3758#section-3.6
    // "Note, if the "New Cumulative TSN" value carried in the arrived
    // FORWARD TSN chunk is found to be behind or at the current cumulative TSN
    // point, the data receiver MUST treat this FORWARD TSN as out-of-date and
    // MUST NOT update its Cumulative TSN.  The receiver SHOULD send a SACK to
    // its peer (the sender of the FORWARD TSN) since such a duplicate may
    // indicate the previous SACK was lost in the network."
    UpdateAckState(AckState::kImmediate,
                   "FORWARD_TSN new_cumulative_tsn was behind");
    return;
  }

  // https://tools.ietf.org/html/rfc3758#section-3.6
  // "When a FORWARD TSN chunk arrives, the data receiver MUST first update
  // its cumulative TSN point to the value carried in the FORWARD TSN chunk, and
  // then MUST further advance its cumulative TSN point locally if possible, as
  // shown by the following example..."

  // The `new_cumulative_ack` will become the current
  // `last_cumulative_acked_tsn_`, and if there have been prior "gaps" that are
  // now overlapping with the new value, remove them.
  last_cumulative_acked_tsn_ = unwrapped_tsn;
  int erased_additional_tsns = std::distance(
      additional_tsns_.begin(), additional_tsns_.upper_bound(unwrapped_tsn));
  additional_tsns_.erase(additional_tsns_.begin(),
                         additional_tsns_.upper_bound(unwrapped_tsn));

  // See if the `last_cumulative_acked_tsn_` can be moved even further:
  while (!additional_tsns_.empty() &&
         *additional_tsns_.begin() == last_cumulative_acked_tsn_.next_value()) {
    last_cumulative_acked_tsn_.Increment();
    additional_tsns_.erase(additional_tsns_.begin());
    ++erased_additional_tsns;
  }

  RTC_DLOG(LS_VERBOSE) << log_prefix_ << "FORWARD_TSN, cum_ack_tsn="
                       << *prev_last_cum_ack_tsn.Wrap() << "->"
                       << *new_cumulative_ack << "->"
                       << *last_cumulative_acked_tsn_.Wrap() << ", removed "
                       << erased_additional_tsns << " additional TSNs";

  // https://tools.ietf.org/html/rfc3758#section-3.6
  // "Any time a FORWARD TSN chunk arrives, for the purposes of sending a
  // SACK, the receiver MUST follow the same rules as if a DATA chunk had been
  // received (i.e., follow the delayed sack rules specified in ..."
  if (ack_state_ == AckState::kIdle) {
    UpdateAckState(AckState::kBecomingDelayed,
                   "received FORWARD_TSN when idle");
  } else if (ack_state_ == AckState::kDelayed) {
    UpdateAckState(AckState::kImmediate,
                   "received FORWARD_TSN when already delayed");
  }
}

SackChunk DataTracker::CreateSelectiveAck(size_t a_rwnd) {
  // Note that in SCTP, the receiver side is allowed to discard received data
  // and signal that to the sender, but only chunks that have previously been
  // reported in the gap-ack-blocks. However, this implementation will never do
  // that. So this SACK produced is more like a NR-SACK as explained in
  // https://ieeexplore.ieee.org/document/4697037 and which there is an RFC
  // draft at https://tools.ietf.org/html/draft-tuexen-tsvwg-sctp-multipath-17.
  std::vector<TSN> duplicate_tsns;
  duplicate_tsns.reserve(duplicates_.size());
  for (UnwrappedTSN tsn : duplicates_) {
    duplicate_tsns.push_back(tsn.Wrap());
  }
  duplicates_.clear();

  return SackChunk(last_cumulative_acked_tsn_.Wrap(), a_rwnd,
                   CreateGapAckBlocks(), duplicate_tsns);
}

std::vector<SackChunk::GapAckBlock> DataTracker::CreateGapAckBlocks() const {
  // This method will calculate the gaps between blocks of contiguous values in
  // `additional_tsns_`, in the same format as the SACK chunk expects it;
  // offsets from the "cumulative ack TSN value".
  std::vector<SackChunk::GapAckBlock> gap_ack_blocks;

  absl::optional<UnwrappedTSN> first_tsn_in_block = absl::nullopt;
  absl::optional<UnwrappedTSN> last_tsn_in_block = absl::nullopt;

  auto flush = [&]() {
    if (first_tsn_in_block.has_value()) {
      auto start_diff = UnwrappedTSN::Difference(*first_tsn_in_block,
                                                 last_cumulative_acked_tsn_);
      auto end_diff = UnwrappedTSN::Difference(*last_tsn_in_block,
                                               last_cumulative_acked_tsn_);
      gap_ack_blocks.emplace_back(static_cast<uint16_t>(start_diff),
                                  static_cast<uint16_t>(end_diff));
      first_tsn_in_block = absl::nullopt;
      last_tsn_in_block = absl::nullopt;
    }
  };
  for (UnwrappedTSN tsn : additional_tsns_) {
    if (last_tsn_in_block.has_value() &&
        last_tsn_in_block->next_value() == tsn) {
      // Continuing the same block.
      last_tsn_in_block = tsn;
    } else {
      // New block, or a gap from the old block's last value.
      flush();
      first_tsn_in_block = tsn;
      last_tsn_in_block = tsn;
    }
  }
  flush();
  return gap_ack_blocks;
}

bool DataTracker::ShouldSendAck(bool also_if_delayed) {
  if (ack_state_ == AckState::kImmediate ||
      (also_if_delayed && (ack_state_ == AckState::kBecomingDelayed ||
                           ack_state_ == AckState::kDelayed))) {
    UpdateAckState(AckState::kIdle, "sending SACK");
    return true;
  }

  return false;
}

bool DataTracker::will_increase_cum_ack_tsn(TSN tsn) const {
  UnwrappedTSN unwrapped = tsn_unwrapper_.PeekUnwrap(tsn);
  return unwrapped == last_cumulative_acked_tsn_.next_value();
}

void DataTracker::ForceImmediateSack() {
  ack_state_ = AckState::kImmediate;
}

void DataTracker::HandleDelayedAckTimerExpiry() {
  UpdateAckState(AckState::kImmediate, "delayed ack timer expired");
}

void DataTracker::ObservePacketEnd() {
  if (ack_state_ == AckState::kBecomingDelayed) {
    UpdateAckState(AckState::kDelayed, "packet end");
  }
}

void DataTracker::UpdateAckState(AckState new_state, absl::string_view reason) {
  if (new_state != ack_state_) {
    RTC_DLOG(LS_VERBOSE) << log_prefix_ << "State changed from "
                         << ToString(ack_state_) << " to "
                         << ToString(new_state) << " due to " << reason;
    if (ack_state_ == AckState::kDelayed) {
      delayed_ack_timer_.Stop();
    } else if (new_state == AckState::kDelayed) {
      delayed_ack_timer_.Start();
    }
    ack_state_ = new_state;
  }
}

absl::string_view DataTracker::ToString(AckState ack_state) {
  switch (ack_state) {
    case AckState::kIdle:
      return "IDLE";
    case AckState::kBecomingDelayed:
      return "BECOMING_DELAYED";
    case AckState::kDelayed:
      return "DELAYED";
    case AckState::kImmediate:
      return "IMMEDIATE";
  }
}

}  // namespace dcsctp