aboutsummaryrefslogtreecommitdiff
path: root/net/dcsctp/tx/retransmission_timeout_test.cc
blob: 3b2e3399fe0efcd050e9555bd56a5c6c9c294878 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/*
 *  Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "net/dcsctp/tx/retransmission_timeout.h"

#include "net/dcsctp/public/dcsctp_options.h"
#include "rtc_base/gunit.h"
#include "test/gmock.h"

namespace dcsctp {
namespace {

constexpr DurationMs kMaxRtt = DurationMs(8'000);
constexpr DurationMs kInitialRto = DurationMs(200);
constexpr DurationMs kMaxRto = DurationMs(800);
constexpr DurationMs kMinRto = DurationMs(120);

DcSctpOptions MakeOptions() {
  DcSctpOptions options;
  options.rtt_max = kMaxRtt;
  options.rto_initial = kInitialRto;
  options.rto_max = kMaxRto;
  options.rto_min = kMinRto;
  return options;
}

TEST(RetransmissionTimeoutTest, HasValidInitialRto) {
  RetransmissionTimeout rto_(MakeOptions());
  EXPECT_EQ(rto_.rto(), kInitialRto);
}

TEST(RetransmissionTimeoutTest, NegativeValuesDoNotAffectRTO) {
  RetransmissionTimeout rto_(MakeOptions());
  // Initial negative value
  rto_.ObserveRTT(DurationMs(-10));
  EXPECT_EQ(rto_.rto(), kInitialRto);
  rto_.ObserveRTT(DurationMs(124));
  EXPECT_EQ(*rto_.rto(), 372);
  // Subsequent negative value
  rto_.ObserveRTT(DurationMs(-10));
  EXPECT_EQ(*rto_.rto(), 372);
}

TEST(RetransmissionTimeoutTest, TooLargeValuesDoNotAffectRTO) {
  RetransmissionTimeout rto_(MakeOptions());
  // Initial too large value
  rto_.ObserveRTT(kMaxRtt + DurationMs(100));
  EXPECT_EQ(rto_.rto(), kInitialRto);
  rto_.ObserveRTT(DurationMs(124));
  EXPECT_EQ(*rto_.rto(), 372);
  // Subsequent too large value
  rto_.ObserveRTT(kMaxRtt + DurationMs(100));
  EXPECT_EQ(*rto_.rto(), 372);
}

TEST(RetransmissionTimeoutTest, WillNeverGoBelowMinimumRto) {
  RetransmissionTimeout rto_(MakeOptions());
  for (int i = 0; i < 1000; ++i) {
    rto_.ObserveRTT(DurationMs(1));
  }
  EXPECT_GE(rto_.rto(), kMinRto);
}

TEST(RetransmissionTimeoutTest, WillNeverGoAboveMaximumRto) {
  RetransmissionTimeout rto_(MakeOptions());
  for (int i = 0; i < 1000; ++i) {
    rto_.ObserveRTT(kMaxRtt - DurationMs(1));
    // Adding jitter, which would make it RTO be well above RTT.
    rto_.ObserveRTT(kMaxRtt - DurationMs(100));
  }
  EXPECT_LE(rto_.rto(), kMaxRto);
}

TEST(RetransmissionTimeoutTest, CalculatesRtoForStableRtt) {
  RetransmissionTimeout rto_(MakeOptions());
  rto_.ObserveRTT(DurationMs(124));
  EXPECT_EQ(*rto_.rto(), 372);
  rto_.ObserveRTT(DurationMs(128));
  EXPECT_EQ(*rto_.rto(), 314);
  rto_.ObserveRTT(DurationMs(123));
  EXPECT_EQ(*rto_.rto(), 268);
  rto_.ObserveRTT(DurationMs(125));
  EXPECT_EQ(*rto_.rto(), 233);
  rto_.ObserveRTT(DurationMs(127));
  EXPECT_EQ(*rto_.rto(), 208);
}

TEST(RetransmissionTimeoutTest, CalculatesRtoForUnstableRtt) {
  RetransmissionTimeout rto_(MakeOptions());
  rto_.ObserveRTT(DurationMs(124));
  EXPECT_EQ(*rto_.rto(), 372);
  rto_.ObserveRTT(DurationMs(402));
  EXPECT_EQ(*rto_.rto(), 622);
  rto_.ObserveRTT(DurationMs(728));
  EXPECT_EQ(*rto_.rto(), 800);
  rto_.ObserveRTT(DurationMs(89));
  EXPECT_EQ(*rto_.rto(), 800);
  rto_.ObserveRTT(DurationMs(126));
  EXPECT_EQ(*rto_.rto(), 800);
}

TEST(RetransmissionTimeoutTest, WillStabilizeAfterAWhile) {
  RetransmissionTimeout rto_(MakeOptions());
  rto_.ObserveRTT(DurationMs(124));
  rto_.ObserveRTT(DurationMs(402));
  rto_.ObserveRTT(DurationMs(728));
  rto_.ObserveRTT(DurationMs(89));
  rto_.ObserveRTT(DurationMs(126));
  EXPECT_EQ(*rto_.rto(), 800);
  rto_.ObserveRTT(DurationMs(124));
  EXPECT_EQ(*rto_.rto(), 800);
  rto_.ObserveRTT(DurationMs(122));
  EXPECT_EQ(*rto_.rto(), 709);
  rto_.ObserveRTT(DurationMs(123));
  EXPECT_EQ(*rto_.rto(), 630);
  rto_.ObserveRTT(DurationMs(124));
  EXPECT_EQ(*rto_.rto(), 561);
  rto_.ObserveRTT(DurationMs(122));
  EXPECT_EQ(*rto_.rto(), 504);
  rto_.ObserveRTT(DurationMs(124));
  EXPECT_EQ(*rto_.rto(), 453);
  rto_.ObserveRTT(DurationMs(124));
  EXPECT_EQ(*rto_.rto(), 409);
  rto_.ObserveRTT(DurationMs(124));
  EXPECT_EQ(*rto_.rto(), 372);
  rto_.ObserveRTT(DurationMs(124));
  EXPECT_EQ(*rto_.rto(), 339);
}

TEST(RetransmissionTimeoutTest, WillAlwaysStayAboveRTT) {
  // In simulations, it's quite common to have a very stable RTT, and having an
  // RTO at the same value will cause issues as expiry timers will be scheduled
  // to be expire exactly when a packet is supposed to arrive. The RTO must be
  // larger than the RTT. In non-simulated environments, this is a non-issue as
  // any jitter will increase the RTO.
  RetransmissionTimeout rto_(MakeOptions());

  for (int i = 0; i < 100; ++i) {
    rto_.ObserveRTT(DurationMs(124));
  }
  EXPECT_GT(*rto_.rto(), 124);
}

}  // namespace
}  // namespace dcsctp