aboutsummaryrefslogtreecommitdiff
path: root/pc/data_channel_integrationtest.cc
blob: 0b697266973f690809369db1e81a5d1fe5c01f64 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
/*
 *  Copyright 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <stdint.h>

#include <algorithm>
#include <memory>
#include <string>
#include <vector>

#include "absl/types/optional.h"
#include "api/data_channel_interface.h"
#include "api/dtmf_sender_interface.h"
#include "api/peer_connection_interface.h"
#include "api/scoped_refptr.h"
#include "api/units/time_delta.h"
#include "pc/test/integration_test_helpers.h"
#include "pc/test/mock_peer_connection_observers.h"
#include "rtc_base/fake_clock.h"
#include "rtc_base/gunit.h"
#include "rtc_base/ref_counted_object.h"
#include "rtc_base/virtual_socket_server.h"

namespace webrtc {

namespace {

class DataChannelIntegrationTest
    : public PeerConnectionIntegrationBaseTest,
      public ::testing::WithParamInterface<SdpSemantics> {
 protected:
  DataChannelIntegrationTest()
      : PeerConnectionIntegrationBaseTest(GetParam()) {}
};

GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(DataChannelIntegrationTest);

// Fake clock must be set before threads are started to prevent race on
// Set/GetClockForTesting().
// To achieve that, multiple inheritance is used as a mixin pattern
// where order of construction is finely controlled.
// This also ensures peerconnection is closed before switching back to non-fake
// clock, avoiding other races and DCHECK failures such as in rtp_sender.cc.
class FakeClockForTest : public rtc::ScopedFakeClock {
 protected:
  FakeClockForTest() {
    // Some things use a time of "0" as a special value, so we need to start out
    // the fake clock at a nonzero time.
    // TODO(deadbeef): Fix this.
    AdvanceTime(webrtc::TimeDelta::Seconds(1));
  }

  // Explicit handle.
  ScopedFakeClock& FakeClock() { return *this; }
};

// Ensure FakeClockForTest is constructed first (see class for rationale).
class DataChannelIntegrationTestWithFakeClock
    : public FakeClockForTest,
      public DataChannelIntegrationTest {};

class DataChannelIntegrationTestPlanB
    : public PeerConnectionIntegrationBaseTest {
 protected:
  DataChannelIntegrationTestPlanB()
      : PeerConnectionIntegrationBaseTest(SdpSemantics::kPlanB) {}
};

GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(
    DataChannelIntegrationTestWithFakeClock);

class DataChannelIntegrationTestUnifiedPlan
    : public PeerConnectionIntegrationBaseTest {
 protected:
  DataChannelIntegrationTestUnifiedPlan()
      : PeerConnectionIntegrationBaseTest(SdpSemantics::kUnifiedPlan) {}
};

#ifdef WEBRTC_HAVE_SCTP

// This test causes a PeerConnection to enter Disconnected state, and
// sends data on a DataChannel while disconnected.
// The data should be surfaced when the connection reestablishes.
TEST_P(DataChannelIntegrationTest, DataChannelWhileDisconnected) {
  CreatePeerConnectionWrappers();
  ConnectFakeSignaling();
  caller()->CreateDataChannel();
  caller()->CreateAndSetAndSignalOffer();
  ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
  ASSERT_TRUE_WAIT(callee()->data_observer(), kDefaultTimeout);
  std::string data1 = "hello first";
  caller()->data_channel()->Send(DataBuffer(data1));
  EXPECT_EQ_WAIT(data1, callee()->data_observer()->last_message(),
                 kDefaultTimeout);
  // Cause a network outage
  virtual_socket_server()->set_drop_probability(1.0);
  EXPECT_EQ_WAIT(PeerConnectionInterface::kIceConnectionDisconnected,
                 caller()->standardized_ice_connection_state(),
                 kDefaultTimeout);
  std::string data2 = "hello second";
  caller()->data_channel()->Send(DataBuffer(data2));
  // Remove the network outage. The connection should reestablish.
  virtual_socket_server()->set_drop_probability(0.0);
  EXPECT_EQ_WAIT(data2, callee()->data_observer()->last_message(),
                 kDefaultTimeout);
}

// This test causes a PeerConnection to enter Disconnected state,
// sends data on a DataChannel while disconnected, and then triggers
// an ICE restart.
// The data should be surfaced when the connection reestablishes.
TEST_P(DataChannelIntegrationTest, DataChannelWhileDisconnectedIceRestart) {
  CreatePeerConnectionWrappers();
  ConnectFakeSignaling();
  caller()->CreateDataChannel();
  caller()->CreateAndSetAndSignalOffer();
  ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
  ASSERT_TRUE_WAIT(callee()->data_observer(), kDefaultTimeout);
  std::string data1 = "hello first";
  caller()->data_channel()->Send(DataBuffer(data1));
  EXPECT_EQ_WAIT(data1, callee()->data_observer()->last_message(),
                 kDefaultTimeout);
  // Cause a network outage
  virtual_socket_server()->set_drop_probability(1.0);
  ASSERT_EQ_WAIT(PeerConnectionInterface::kIceConnectionDisconnected,
                 caller()->standardized_ice_connection_state(),
                 kDefaultTimeout);
  std::string data2 = "hello second";
  caller()->data_channel()->Send(DataBuffer(data2));

  // Trigger an ICE restart. The signaling channel is not affected by
  // the network outage.
  caller()->SetOfferAnswerOptions(IceRestartOfferAnswerOptions());
  caller()->CreateAndSetAndSignalOffer();
  ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
  // Remove the network outage. The connection should reestablish.
  virtual_socket_server()->set_drop_probability(0.0);
  EXPECT_EQ_WAIT(data2, callee()->data_observer()->last_message(),
                 kDefaultTimeout);
}

// This test sets up a call between two parties with audio, video and an SCTP
// data channel.
TEST_P(DataChannelIntegrationTest, EndToEndCallWithSctpDataChannel) {
  ASSERT_TRUE(CreatePeerConnectionWrappers());
  ConnectFakeSignaling();
  // Expect that data channel created on caller side will show up for callee as
  // well.
  caller()->CreateDataChannel();
  caller()->AddAudioVideoTracks();
  callee()->AddAudioVideoTracks();
  caller()->CreateAndSetAndSignalOffer();
  ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
  // Ensure the existence of the SCTP data channel didn't impede audio/video.
  MediaExpectations media_expectations;
  media_expectations.ExpectBidirectionalAudioAndVideo();
  ASSERT_TRUE(ExpectNewFrames(media_expectations));
  // Caller data channel should already exist (it created one). Callee data
  // channel may not exist yet, since negotiation happens in-band, not in SDP.
  ASSERT_NE(nullptr, caller()->data_channel());
  ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
  EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
  EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);

  // Ensure data can be sent in both directions.
  std::string data = "hello world";
  caller()->data_channel()->Send(DataBuffer(data));
  EXPECT_EQ_WAIT(data, callee()->data_observer()->last_message(),
                 kDefaultTimeout);
  callee()->data_channel()->Send(DataBuffer(data));
  EXPECT_EQ_WAIT(data, caller()->data_observer()->last_message(),
                 kDefaultTimeout);
}

// This test sets up a call between two parties with an SCTP
// data channel only, and sends messages of various sizes.
TEST_P(DataChannelIntegrationTest,
       EndToEndCallWithSctpDataChannelVariousSizes) {
  ASSERT_TRUE(CreatePeerConnectionWrappers());
  ConnectFakeSignaling();
  // Expect that data channel created on caller side will show up for callee as
  // well.
  caller()->CreateDataChannel();
  caller()->CreateAndSetAndSignalOffer();
  ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
  // Caller data channel should already exist (it created one). Callee data
  // channel may not exist yet, since negotiation happens in-band, not in SDP.
  ASSERT_NE(nullptr, caller()->data_channel());
  ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
  EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
  EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);

  for (int message_size = 1; message_size < 100000; message_size *= 2) {
    std::string data(message_size, 'a');
    caller()->data_channel()->Send(DataBuffer(data));
    EXPECT_EQ_WAIT(data, callee()->data_observer()->last_message(),
                   kDefaultTimeout);
    callee()->data_channel()->Send(DataBuffer(data));
    EXPECT_EQ_WAIT(data, caller()->data_observer()->last_message(),
                   kDefaultTimeout);
  }
  // Specifically probe the area around the MTU size.
  for (int message_size = 1100; message_size < 1300; message_size += 1) {
    std::string data(message_size, 'a');
    caller()->data_channel()->Send(DataBuffer(data));
    EXPECT_EQ_WAIT(data, callee()->data_observer()->last_message(),
                   kDefaultTimeout);
    callee()->data_channel()->Send(DataBuffer(data));
    EXPECT_EQ_WAIT(data, caller()->data_observer()->last_message(),
                   kDefaultTimeout);
  }
}

TEST_P(DataChannelIntegrationTest,
       EndToEndCallWithSctpDataChannelLowestSafeMtu) {
  // The lowest payload size limit that's tested and found safe for this
  // application. Note that this is not the safe limit under all conditions;
  // in particular, the default is not the largest DTLS signature, and
  // this test does not use TURN.
  const size_t kLowestSafePayloadSizeLimit = 1225;

  ASSERT_TRUE(CreatePeerConnectionWrappers());
  ConnectFakeSignaling();
  // Expect that data channel created on caller side will show up for callee as
  // well.
  caller()->CreateDataChannel();
  caller()->CreateAndSetAndSignalOffer();
  ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
  // Caller data channel should already exist (it created one). Callee data
  // channel may not exist yet, since negotiation happens in-band, not in SDP.
  ASSERT_NE(nullptr, caller()->data_channel());
  ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
  EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
  EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);

  virtual_socket_server()->set_max_udp_payload(kLowestSafePayloadSizeLimit);
  for (int message_size = 1140; message_size < 1240; message_size += 1) {
    std::string data(message_size, 'a');
    caller()->data_channel()->Send(DataBuffer(data));
    ASSERT_EQ_WAIT(data, callee()->data_observer()->last_message(),
                   kDefaultTimeout);
    callee()->data_channel()->Send(DataBuffer(data));
    ASSERT_EQ_WAIT(data, caller()->data_observer()->last_message(),
                   kDefaultTimeout);
  }
}

// This test verifies that lowering the MTU of the connection will cause
// the datachannel to not transmit reliably.
// The purpose of this test is to ensure that we know how a too-small MTU
// error manifests itself.
TEST_P(DataChannelIntegrationTest, EndToEndCallWithSctpDataChannelHarmfulMtu) {
  // The lowest payload size limit that's tested and found safe for this
  // application in this configuration (see test above).
  const size_t kLowestSafePayloadSizeLimit = 1225;
  // The size of the smallest message that fails to be delivered.
  const size_t kMessageSizeThatIsNotDelivered = 1157;

  ASSERT_TRUE(CreatePeerConnectionWrappers());
  ConnectFakeSignaling();
  caller()->CreateDataChannel();
  caller()->CreateAndSetAndSignalOffer();
  ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
  ASSERT_NE(nullptr, caller()->data_channel());
  ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
  EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
  EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);

  virtual_socket_server()->set_max_udp_payload(kLowestSafePayloadSizeLimit - 1);
  // Probe for an undelivered or slowly delivered message. The exact
  // size limit seems to be dependent on the message history, so make the
  // code easily able to find the current value.
  bool failure_seen = false;
  for (size_t message_size = 1110; message_size < 1400; message_size++) {
    const size_t message_count =
        callee()->data_observer()->received_message_count();
    const std::string data(message_size, 'a');
    caller()->data_channel()->Send(DataBuffer(data));
    // Wait a very short time for the message to be delivered.
    // Note: Waiting only 10 ms is too short for Windows bots; they will
    // flakily fail at a random frame.
    WAIT(callee()->data_observer()->received_message_count() > message_count,
         100);
    if (callee()->data_observer()->received_message_count() == message_count) {
      ASSERT_EQ(kMessageSizeThatIsNotDelivered, message_size);
      failure_seen = true;
      break;
    }
  }
  ASSERT_TRUE(failure_seen);
}

// Ensure that when the callee closes an SCTP data channel, the closing
// procedure results in the data channel being closed for the caller as well.
TEST_P(DataChannelIntegrationTest, CalleeClosesSctpDataChannel) {
  // Same procedure as above test.
  ASSERT_TRUE(CreatePeerConnectionWrappers());
  ConnectFakeSignaling();
  caller()->CreateDataChannel();
  caller()->AddAudioVideoTracks();
  callee()->AddAudioVideoTracks();
  caller()->CreateAndSetAndSignalOffer();
  ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
  ASSERT_NE(nullptr, caller()->data_channel());
  ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
  ASSERT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
  ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);

  // Close the data channel on the callee side, and wait for it to reach the
  // "closed" state on both sides.
  callee()->data_channel()->Close();
  EXPECT_TRUE_WAIT(!caller()->data_observer()->IsOpen(), kDefaultTimeout);
  EXPECT_TRUE_WAIT(!callee()->data_observer()->IsOpen(), kDefaultTimeout);
}

TEST_P(DataChannelIntegrationTest, SctpDataChannelConfigSentToOtherSide) {
  ASSERT_TRUE(CreatePeerConnectionWrappers());
  ConnectFakeSignaling();
  webrtc::DataChannelInit init;
  init.id = 53;
  init.maxRetransmits = 52;
  caller()->CreateDataChannel("data-channel", &init);
  caller()->AddAudioVideoTracks();
  callee()->AddAudioVideoTracks();
  caller()->CreateAndSetAndSignalOffer();
  ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
  ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
  ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
  // Since "negotiated" is false, the "id" parameter should be ignored.
  EXPECT_NE(init.id, callee()->data_channel()->id());
  EXPECT_EQ("data-channel", callee()->data_channel()->label());
  EXPECT_EQ(init.maxRetransmits, callee()->data_channel()->maxRetransmits());
  EXPECT_FALSE(callee()->data_channel()->negotiated());
}

// Test usrsctp's ability to process unordered data stream, where data actually
// arrives out of order using simulated delays. Previously there have been some
// bugs in this area.
TEST_P(DataChannelIntegrationTest, StressTestUnorderedSctpDataChannel) {
  // Introduce random network delays.
  // Otherwise it's not a true "unordered" test.
  virtual_socket_server()->set_delay_mean(20);
  virtual_socket_server()->set_delay_stddev(5);
  virtual_socket_server()->UpdateDelayDistribution();
  // Normal procedure, but with unordered data channel config.
  ASSERT_TRUE(CreatePeerConnectionWrappers());
  ConnectFakeSignaling();
  webrtc::DataChannelInit init;
  init.ordered = false;
  caller()->CreateDataChannel(&init);
  caller()->CreateAndSetAndSignalOffer();
  ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
  ASSERT_NE(nullptr, caller()->data_channel());
  ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
  ASSERT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
  ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);

  static constexpr int kNumMessages = 100;
  // Deliberately chosen to be larger than the MTU so messages get fragmented.
  static constexpr size_t kMaxMessageSize = 4096;
  // Create and send random messages.
  std::vector<std::string> sent_messages;
  for (int i = 0; i < kNumMessages; ++i) {
    size_t length =
        (rand() % kMaxMessageSize) + 1;  // NOLINT (rand_r instead of rand)
    std::string message;
    ASSERT_TRUE(rtc::CreateRandomString(length, &message));
    caller()->data_channel()->Send(DataBuffer(message));
    callee()->data_channel()->Send(DataBuffer(message));
    sent_messages.push_back(message);
  }

  // Wait for all messages to be received.
  EXPECT_EQ_WAIT(rtc::checked_cast<size_t>(kNumMessages),
                 caller()->data_observer()->received_message_count(),
                 kDefaultTimeout);
  EXPECT_EQ_WAIT(rtc::checked_cast<size_t>(kNumMessages),
                 callee()->data_observer()->received_message_count(),
                 kDefaultTimeout);

  // Sort and compare to make sure none of the messages were corrupted.
  std::vector<std::string> caller_received_messages =
      caller()->data_observer()->messages();
  std::vector<std::string> callee_received_messages =
      callee()->data_observer()->messages();
  absl::c_sort(sent_messages);
  absl::c_sort(caller_received_messages);
  absl::c_sort(callee_received_messages);
  EXPECT_EQ(sent_messages, caller_received_messages);
  EXPECT_EQ(sent_messages, callee_received_messages);
}

// This test sets up a call between two parties with audio, and video. When
// audio and video are setup and flowing, an SCTP data channel is negotiated.
TEST_P(DataChannelIntegrationTest, AddSctpDataChannelInSubsequentOffer) {
  ASSERT_TRUE(CreatePeerConnectionWrappers());
  ConnectFakeSignaling();
  // Do initial offer/answer with audio/video.
  caller()->AddAudioVideoTracks();
  callee()->AddAudioVideoTracks();
  caller()->CreateAndSetAndSignalOffer();
  ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
  // Create data channel and do new offer and answer.
  caller()->CreateDataChannel();
  caller()->CreateAndSetAndSignalOffer();
  ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
  // Caller data channel should already exist (it created one). Callee data
  // channel may not exist yet, since negotiation happens in-band, not in SDP.
  ASSERT_NE(nullptr, caller()->data_channel());
  ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
  EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
  EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
  // Ensure data can be sent in both directions.
  std::string data = "hello world";
  caller()->data_channel()->Send(DataBuffer(data));
  EXPECT_EQ_WAIT(data, callee()->data_observer()->last_message(),
                 kDefaultTimeout);
  callee()->data_channel()->Send(DataBuffer(data));
  EXPECT_EQ_WAIT(data, caller()->data_observer()->last_message(),
                 kDefaultTimeout);
}

// Set up a connection initially just using SCTP data channels, later upgrading
// to audio/video, ensuring frames are received end-to-end. Effectively the
// inverse of the test above.
// This was broken in M57; see https://crbug.com/711243
TEST_P(DataChannelIntegrationTest, SctpDataChannelToAudioVideoUpgrade) {
  ASSERT_TRUE(CreatePeerConnectionWrappers());
  ConnectFakeSignaling();
  // Do initial offer/answer with just data channel.
  caller()->CreateDataChannel();
  caller()->CreateAndSetAndSignalOffer();
  ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
  // Wait until data can be sent over the data channel.
  ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
  ASSERT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
  ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);

  // Do subsequent offer/answer with two-way audio and video. Audio and video
  // should end up bundled on the DTLS/ICE transport already used for data.
  caller()->AddAudioVideoTracks();
  callee()->AddAudioVideoTracks();
  caller()->CreateAndSetAndSignalOffer();
  ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
  MediaExpectations media_expectations;
  media_expectations.ExpectBidirectionalAudioAndVideo();
  ASSERT_TRUE(ExpectNewFrames(media_expectations));
}

static void MakeSpecCompliantSctpOffer(cricket::SessionDescription* desc) {
  cricket::SctpDataContentDescription* dcd_offer =
      GetFirstSctpDataContentDescription(desc);
  // See https://crbug.com/webrtc/11211 - this function is a no-op
  ASSERT_TRUE(dcd_offer);
  dcd_offer->set_use_sctpmap(false);
  dcd_offer->set_protocol("UDP/DTLS/SCTP");
}

// Test that the data channel works when a spec-compliant SCTP m= section is
// offered (using "a=sctp-port" instead of "a=sctpmap", and using
// "UDP/DTLS/SCTP" as the protocol).
TEST_P(DataChannelIntegrationTest,
       DataChannelWorksWhenSpecCompliantSctpOfferReceived) {
  ASSERT_TRUE(CreatePeerConnectionWrappers());
  ConnectFakeSignaling();
  caller()->CreateDataChannel();
  caller()->SetGeneratedSdpMunger(MakeSpecCompliantSctpOffer);
  caller()->CreateAndSetAndSignalOffer();
  ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
  ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
  EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
  EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);

  // Ensure data can be sent in both directions.
  std::string data = "hello world";
  caller()->data_channel()->Send(DataBuffer(data));
  EXPECT_EQ_WAIT(data, callee()->data_observer()->last_message(),
                 kDefaultTimeout);
  callee()->data_channel()->Send(DataBuffer(data));
  EXPECT_EQ_WAIT(data, caller()->data_observer()->last_message(),
                 kDefaultTimeout);
}

#endif  // WEBRTC_HAVE_SCTP

// Test that after closing PeerConnections, they stop sending any packets (ICE,
// DTLS, RTP...).
TEST_P(DataChannelIntegrationTest, ClosingConnectionStopsPacketFlow) {
  // Set up audio/video/data, wait for some frames to be received.
  ASSERT_TRUE(CreatePeerConnectionWrappers());
  ConnectFakeSignaling();
  caller()->AddAudioVideoTracks();
#ifdef WEBRTC_HAVE_SCTP
  caller()->CreateDataChannel();
#endif
  caller()->CreateAndSetAndSignalOffer();
  ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
  MediaExpectations media_expectations;
  media_expectations.CalleeExpectsSomeAudioAndVideo();
  ASSERT_TRUE(ExpectNewFrames(media_expectations));
  // Close PeerConnections.
  ClosePeerConnections();
  // Pump messages for a second, and ensure no new packets end up sent.
  uint32_t sent_packets_a = virtual_socket_server()->sent_packets();
  WAIT(false, 1000);
  uint32_t sent_packets_b = virtual_socket_server()->sent_packets();
  EXPECT_EQ(sent_packets_a, sent_packets_b);
}

// Test that transport stats are generated by the RTCStatsCollector for a
// connection that only involves data channels. This is a regression test for
// crbug.com/826972.
#ifdef WEBRTC_HAVE_SCTP
TEST_P(DataChannelIntegrationTest,
       TransportStatsReportedForDataChannelOnlyConnection) {
  ASSERT_TRUE(CreatePeerConnectionWrappers());
  ConnectFakeSignaling();
  caller()->CreateDataChannel();

  caller()->CreateAndSetAndSignalOffer();
  ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
  ASSERT_TRUE_WAIT(callee()->data_channel(), kDefaultTimeout);

  auto caller_report = caller()->NewGetStats();
  EXPECT_EQ(1u, caller_report->GetStatsOfType<RTCTransportStats>().size());
  auto callee_report = callee()->NewGetStats();
  EXPECT_EQ(1u, callee_report->GetStatsOfType<RTCTransportStats>().size());
}

INSTANTIATE_TEST_SUITE_P(DataChannelIntegrationTest,
                         DataChannelIntegrationTest,
                         Values(SdpSemantics::kPlanB,
                                SdpSemantics::kUnifiedPlan));

INSTANTIATE_TEST_SUITE_P(DataChannelIntegrationTest,
                         DataChannelIntegrationTestWithFakeClock,
                         Values(SdpSemantics::kPlanB,
                                SdpSemantics::kUnifiedPlan));

TEST_F(DataChannelIntegrationTestUnifiedPlan,
       EndToEndCallWithBundledSctpDataChannel) {
  ASSERT_TRUE(CreatePeerConnectionWrappers());
  ConnectFakeSignaling();
  caller()->CreateDataChannel();
  caller()->AddAudioVideoTracks();
  callee()->AddAudioVideoTracks();
  caller()->CreateAndSetAndSignalOffer();
  ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
  ASSERT_TRUE_WAIT(caller()->pc()->GetSctpTransport(), kDefaultTimeout);
  ASSERT_EQ_WAIT(SctpTransportState::kConnected,
                 caller()->pc()->GetSctpTransport()->Information().state(),
                 kDefaultTimeout);
  ASSERT_TRUE_WAIT(callee()->data_channel(), kDefaultTimeout);
  ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
}

TEST_F(DataChannelIntegrationTestUnifiedPlan,
       EndToEndCallWithDataChannelOnlyConnects) {
  ASSERT_TRUE(CreatePeerConnectionWrappers());
  ConnectFakeSignaling();
  caller()->CreateDataChannel();
  caller()->CreateAndSetAndSignalOffer();
  ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
  ASSERT_TRUE_WAIT(callee()->data_channel(), kDefaultTimeout);
  ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
  ASSERT_TRUE(caller()->data_observer()->IsOpen());
}

TEST_F(DataChannelIntegrationTestUnifiedPlan, DataChannelClosesWhenClosed) {
  ASSERT_TRUE(CreatePeerConnectionWrappers());
  ConnectFakeSignaling();
  caller()->CreateDataChannel();
  caller()->CreateAndSetAndSignalOffer();
  ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
  ASSERT_TRUE_WAIT(callee()->data_observer(), kDefaultTimeout);
  ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
  caller()->data_channel()->Close();
  ASSERT_TRUE_WAIT(!callee()->data_observer()->IsOpen(), kDefaultTimeout);
}

TEST_F(DataChannelIntegrationTestUnifiedPlan,
       DataChannelClosesWhenClosedReverse) {
  ASSERT_TRUE(CreatePeerConnectionWrappers());
  ConnectFakeSignaling();
  caller()->CreateDataChannel();
  caller()->CreateAndSetAndSignalOffer();
  ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
  ASSERT_TRUE_WAIT(callee()->data_observer(), kDefaultTimeout);
  ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
  callee()->data_channel()->Close();
  ASSERT_TRUE_WAIT(!caller()->data_observer()->IsOpen(), kDefaultTimeout);
}

TEST_F(DataChannelIntegrationTestUnifiedPlan,
       DataChannelClosesWhenPeerConnectionClosed) {
  ASSERT_TRUE(CreatePeerConnectionWrappers());
  ConnectFakeSignaling();
  caller()->CreateDataChannel();
  caller()->CreateAndSetAndSignalOffer();
  ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
  ASSERT_TRUE_WAIT(callee()->data_observer(), kDefaultTimeout);
  ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
  caller()->pc()->Close();
  ASSERT_TRUE_WAIT(!callee()->data_observer()->IsOpen(), kDefaultTimeout);
}

#endif  // WEBRTC_HAVE_SCTP

}  // namespace

}  // namespace webrtc