aboutsummaryrefslogtreecommitdiff
path: root/rtc_base/bit_buffer.cc
blob: 540141fe521babc7e296eafd7e47110dd3e6e74f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
/*
 *  Copyright 2015 The WebRTC Project Authors. All rights reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "rtc_base/bit_buffer.h"

#include <algorithm>
#include <limits>

#include "rtc_base/checks.h"

namespace {

// Returns the lowest (right-most) |bit_count| bits in |byte|.
uint8_t LowestBits(uint8_t byte, size_t bit_count) {
  RTC_DCHECK_LE(bit_count, 8);
  return byte & ((1 << bit_count) - 1);
}

// Returns the highest (left-most) |bit_count| bits in |byte|, shifted to the
// lowest bits (to the right).
uint8_t HighestBits(uint8_t byte, size_t bit_count) {
  RTC_DCHECK_LE(bit_count, 8);
  uint8_t shift = 8 - static_cast<uint8_t>(bit_count);
  uint8_t mask = 0xFF << shift;
  return (byte & mask) >> shift;
}

// Returns the highest byte of |val| in a uint8_t.
uint8_t HighestByte(uint64_t val) {
  return static_cast<uint8_t>(val >> 56);
}

// Returns the result of writing partial data from |source|, of
// |source_bit_count| size in the highest bits, to |target| at
// |target_bit_offset| from the highest bit.
uint8_t WritePartialByte(uint8_t source,
                         size_t source_bit_count,
                         uint8_t target,
                         size_t target_bit_offset) {
  RTC_DCHECK(target_bit_offset < 8);
  RTC_DCHECK(source_bit_count < 9);
  RTC_DCHECK(source_bit_count <= (8 - target_bit_offset));
  // Generate a mask for just the bits we're going to overwrite, so:
  uint8_t mask =
      // The number of bits we want, in the most significant bits...
      static_cast<uint8_t>(0xFF << (8 - source_bit_count))
      // ...shifted over to the target offset from the most signficant bit.
      >> target_bit_offset;

  // We want the target, with the bits we'll overwrite masked off, or'ed with
  // the bits from the source we want.
  return (target & ~mask) | (source >> target_bit_offset);
}

// Counts the number of bits used in the binary representation of val.
size_t CountBits(uint64_t val) {
  size_t bit_count = 0;
  while (val != 0) {
    bit_count++;
    val >>= 1;
  }
  return bit_count;
}

}  // namespace

namespace rtc {

BitBuffer::BitBuffer(const uint8_t* bytes, size_t byte_count)
    : bytes_(bytes), byte_count_(byte_count), byte_offset_(), bit_offset_() {
  RTC_DCHECK(static_cast<uint64_t>(byte_count_) <=
             std::numeric_limits<uint32_t>::max());
}

uint64_t BitBuffer::RemainingBitCount() const {
  return (static_cast<uint64_t>(byte_count_) - byte_offset_) * 8 - bit_offset_;
}

bool BitBuffer::ReadUInt8(uint8_t* val) {
  uint32_t bit_val;
  if (!ReadBits(&bit_val, sizeof(uint8_t) * 8)) {
    return false;
  }
  RTC_DCHECK(bit_val <= std::numeric_limits<uint8_t>::max());
  *val = static_cast<uint8_t>(bit_val);
  return true;
}

bool BitBuffer::ReadUInt16(uint16_t* val) {
  uint32_t bit_val;
  if (!ReadBits(&bit_val, sizeof(uint16_t) * 8)) {
    return false;
  }
  RTC_DCHECK(bit_val <= std::numeric_limits<uint16_t>::max());
  *val = static_cast<uint16_t>(bit_val);
  return true;
}

bool BitBuffer::ReadUInt32(uint32_t* val) {
  return ReadBits(val, sizeof(uint32_t) * 8);
}

bool BitBuffer::PeekBits(uint32_t* val, size_t bit_count) {
  // TODO(nisse): Could allow bit_count == 0 and always return success. But
  // current code reads one byte beyond end of buffer in the case that
  // RemainingBitCount() == 0 and bit_count == 0.
  RTC_DCHECK(bit_count > 0);
  if (!val || bit_count > RemainingBitCount() || bit_count > 32) {
    return false;
  }
  const uint8_t* bytes = bytes_ + byte_offset_;
  size_t remaining_bits_in_current_byte = 8 - bit_offset_;
  uint32_t bits = LowestBits(*bytes++, remaining_bits_in_current_byte);
  // If we're reading fewer bits than what's left in the current byte, just
  // return the portion of this byte that we need.
  if (bit_count < remaining_bits_in_current_byte) {
    *val = HighestBits(bits, bit_offset_ + bit_count);
    return true;
  }
  // Otherwise, subtract what we've read from the bit count and read as many
  // full bytes as we can into bits.
  bit_count -= remaining_bits_in_current_byte;
  while (bit_count >= 8) {
    bits = (bits << 8) | *bytes++;
    bit_count -= 8;
  }
  // Whatever we have left is smaller than a byte, so grab just the bits we need
  // and shift them into the lowest bits.
  if (bit_count > 0) {
    bits <<= bit_count;
    bits |= HighestBits(*bytes, bit_count);
  }
  *val = bits;
  return true;
}

bool BitBuffer::ReadBits(uint32_t* val, size_t bit_count) {
  return PeekBits(val, bit_count) && ConsumeBits(bit_count);
}

bool BitBuffer::ConsumeBytes(size_t byte_count) {
  return ConsumeBits(byte_count * 8);
}

bool BitBuffer::ConsumeBits(size_t bit_count) {
  if (bit_count > RemainingBitCount()) {
    return false;
  }

  byte_offset_ += (bit_offset_ + bit_count) / 8;
  bit_offset_ = (bit_offset_ + bit_count) % 8;
  return true;
}

bool BitBuffer::ReadNonSymmetric(uint32_t* val, uint32_t num_values) {
  RTC_DCHECK_GT(num_values, 0);
  RTC_DCHECK_LE(num_values, uint32_t{1} << 31);
  if (num_values == 1) {
    // When there is only one possible value, it requires zero bits to store it.
    // But ReadBits doesn't support reading zero bits.
    *val = 0;
    return true;
  }
  size_t count_bits = CountBits(num_values);
  uint32_t num_min_bits_values = (uint32_t{1} << count_bits) - num_values;

  if (!ReadBits(val, count_bits - 1)) {
    return false;
  }

  if (*val < num_min_bits_values) {
    return true;
  }

  uint32_t extra_bit;
  if (!ReadBits(&extra_bit, /*bit_count=*/1)) {
    return false;
  }

  *val = (*val << 1) + extra_bit - num_min_bits_values;
  return true;
}

bool BitBuffer::ReadExponentialGolomb(uint32_t* val) {
  if (!val) {
    return false;
  }
  // Store off the current byte/bit offset, in case we want to restore them due
  // to a failed parse.
  size_t original_byte_offset = byte_offset_;
  size_t original_bit_offset = bit_offset_;

  // Count the number of leading 0 bits by peeking/consuming them one at a time.
  size_t zero_bit_count = 0;
  uint32_t peeked_bit;
  while (PeekBits(&peeked_bit, 1) && peeked_bit == 0) {
    zero_bit_count++;
    ConsumeBits(1);
  }

  // We should either be at the end of the stream, or the next bit should be 1.
  RTC_DCHECK(!PeekBits(&peeked_bit, 1) || peeked_bit == 1);

  // The bit count of the value is the number of zeros + 1. Make sure that many
  // bits fits in a uint32_t and that we have enough bits left for it, and then
  // read the value.
  size_t value_bit_count = zero_bit_count + 1;
  if (value_bit_count > 32 || !ReadBits(val, value_bit_count)) {
    RTC_CHECK(Seek(original_byte_offset, original_bit_offset));
    return false;
  }
  *val -= 1;
  return true;
}

bool BitBuffer::ReadSignedExponentialGolomb(int32_t* val) {
  uint32_t unsigned_val;
  if (!ReadExponentialGolomb(&unsigned_val)) {
    return false;
  }
  if ((unsigned_val & 1) == 0) {
    *val = -static_cast<int32_t>(unsigned_val / 2);
  } else {
    *val = (unsigned_val + 1) / 2;
  }
  return true;
}

void BitBuffer::GetCurrentOffset(size_t* out_byte_offset,
                                 size_t* out_bit_offset) {
  RTC_CHECK(out_byte_offset != nullptr);
  RTC_CHECK(out_bit_offset != nullptr);
  *out_byte_offset = byte_offset_;
  *out_bit_offset = bit_offset_;
}

bool BitBuffer::Seek(size_t byte_offset, size_t bit_offset) {
  if (byte_offset > byte_count_ || bit_offset > 7 ||
      (byte_offset == byte_count_ && bit_offset > 0)) {
    return false;
  }
  byte_offset_ = byte_offset;
  bit_offset_ = bit_offset;
  return true;
}

BitBufferWriter::BitBufferWriter(uint8_t* bytes, size_t byte_count)
    : BitBuffer(bytes, byte_count), writable_bytes_(bytes) {}

bool BitBufferWriter::WriteUInt8(uint8_t val) {
  return WriteBits(val, sizeof(uint8_t) * 8);
}

bool BitBufferWriter::WriteUInt16(uint16_t val) {
  return WriteBits(val, sizeof(uint16_t) * 8);
}

bool BitBufferWriter::WriteUInt32(uint32_t val) {
  return WriteBits(val, sizeof(uint32_t) * 8);
}

bool BitBufferWriter::WriteBits(uint64_t val, size_t bit_count) {
  if (bit_count > RemainingBitCount()) {
    return false;
  }
  size_t total_bits = bit_count;

  // For simplicity, push the bits we want to read from val to the highest bits.
  val <<= (sizeof(uint64_t) * 8 - bit_count);

  uint8_t* bytes = writable_bytes_ + byte_offset_;

  // The first byte is relatively special; the bit offset to write to may put us
  // in the middle of the byte, and the total bit count to write may require we
  // save the bits at the end of the byte.
  size_t remaining_bits_in_current_byte = 8 - bit_offset_;
  size_t bits_in_first_byte =
      std::min(bit_count, remaining_bits_in_current_byte);
  *bytes = WritePartialByte(HighestByte(val), bits_in_first_byte, *bytes,
                            bit_offset_);
  if (bit_count <= remaining_bits_in_current_byte) {
    // Nothing left to write, so quit early.
    return ConsumeBits(total_bits);
  }

  // Subtract what we've written from the bit count, shift it off the value, and
  // write the remaining full bytes.
  val <<= bits_in_first_byte;
  bytes++;
  bit_count -= bits_in_first_byte;
  while (bit_count >= 8) {
    *bytes++ = HighestByte(val);
    val <<= 8;
    bit_count -= 8;
  }

  // Last byte may also be partial, so write the remaining bits from the top of
  // val.
  if (bit_count > 0) {
    *bytes = WritePartialByte(HighestByte(val), bit_count, *bytes, 0);
  }

  // All done! Consume the bits we've written.
  return ConsumeBits(total_bits);
}

bool BitBufferWriter::WriteNonSymmetric(uint32_t val, uint32_t num_values) {
  RTC_DCHECK_LT(val, num_values);
  RTC_DCHECK_LE(num_values, uint32_t{1} << 31);
  if (num_values == 1) {
    // When there is only one possible value, it requires zero bits to store it.
    // But WriteBits doesn't support writing zero bits.
    return true;
  }
  size_t count_bits = CountBits(num_values);
  uint32_t num_min_bits_values = (uint32_t{1} << count_bits) - num_values;

  return val < num_min_bits_values
             ? WriteBits(val, count_bits - 1)
             : WriteBits(val + num_min_bits_values, count_bits);
}

size_t BitBufferWriter::SizeNonSymmetricBits(uint32_t val,
                                             uint32_t num_values) {
  RTC_DCHECK_LT(val, num_values);
  RTC_DCHECK_LE(num_values, uint32_t{1} << 31);
  size_t count_bits = CountBits(num_values);
  uint32_t num_min_bits_values = (uint32_t{1} << count_bits) - num_values;

  return val < num_min_bits_values ? (count_bits - 1) : count_bits;
}

bool BitBufferWriter::WriteExponentialGolomb(uint32_t val) {
  // We don't support reading UINT32_MAX, because it doesn't fit in a uint32_t
  // when encoded, so don't support writing it either.
  if (val == std::numeric_limits<uint32_t>::max()) {
    return false;
  }
  uint64_t val_to_encode = static_cast<uint64_t>(val) + 1;

  // We need to write CountBits(val+1) 0s and then val+1. Since val (as a
  // uint64_t) has leading zeros, we can just write the total golomb encoded
  // size worth of bits, knowing the value will appear last.
  return WriteBits(val_to_encode, CountBits(val_to_encode) * 2 - 1);
}

bool BitBufferWriter::WriteSignedExponentialGolomb(int32_t val) {
  if (val == 0) {
    return WriteExponentialGolomb(0);
  } else if (val > 0) {
    uint32_t signed_val = val;
    return WriteExponentialGolomb((signed_val * 2) - 1);
  } else {
    if (val == std::numeric_limits<int32_t>::min())
      return false;  // Not supported, would cause overflow.
    uint32_t signed_val = -val;
    return WriteExponentialGolomb(signed_val * 2);
  }
}

}  // namespace rtc