aboutsummaryrefslogtreecommitdiff
path: root/rtc_base/openssl_stream_adapter.cc
blob: aa0bc3d40cbb0fe81b9ca1b3f35c1f6aa5fb92b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
/*
 *  Copyright 2004 The WebRTC Project Authors. All rights reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "rtc_base/openssl_stream_adapter.h"

#include <openssl/bio.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include <openssl/tls1.h>
#include <openssl/x509v3.h>
#ifndef OPENSSL_IS_BORINGSSL
#include <openssl/dtls1.h>
#include <openssl/ssl.h>
#endif

#include <atomic>
#include <memory>
#include <utility>
#include <vector>

#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/openssl.h"
#include "rtc_base/openssl_adapter.h"
#include "rtc_base/openssl_digest.h"
#ifdef OPENSSL_IS_BORINGSSL
#include "rtc_base/boringssl_identity.h"
#else
#include "rtc_base/openssl_identity.h"
#endif
#include "rtc_base/openssl_utility.h"
#include "rtc_base/ssl_certificate.h"
#include "rtc_base/stream.h"
#include "rtc_base/task_utils/to_queued_task.h"
#include "rtc_base/thread.h"
#include "rtc_base/time_utils.h"
#include "system_wrappers/include/field_trial.h"

#if (OPENSSL_VERSION_NUMBER < 0x10100000L)
#error "webrtc requires at least OpenSSL version 1.1.0, to support DTLS-SRTP"
#endif

// Defines for the TLS Cipher Suite Map.
#define DEFINE_CIPHER_ENTRY_SSL3(name) \
  { SSL3_CK_##name, "TLS_" #name }
#define DEFINE_CIPHER_ENTRY_TLS1(name) \
  { TLS1_CK_##name, "TLS_" #name }

namespace rtc {
namespace {
// SRTP cipher suite table. |internal_name| is used to construct a
// colon-separated profile strings which is needed by
// SSL_CTX_set_tlsext_use_srtp().
struct SrtpCipherMapEntry {
  const char* internal_name;
  const int id;
};

// Cipher name table. Maps internal OpenSSL cipher ids to the RFC name.
struct SslCipherMapEntry {
  uint32_t openssl_id;
  const char* rfc_name;
};

// This isn't elegant, but it's better than an external reference
constexpr SrtpCipherMapEntry kSrtpCipherMap[] = {
    {"SRTP_AES128_CM_SHA1_80", SRTP_AES128_CM_SHA1_80},
    {"SRTP_AES128_CM_SHA1_32", SRTP_AES128_CM_SHA1_32},
    {"SRTP_AEAD_AES_128_GCM", SRTP_AEAD_AES_128_GCM},
    {"SRTP_AEAD_AES_256_GCM", SRTP_AEAD_AES_256_GCM}};

#ifndef OPENSSL_IS_BORINGSSL
// The "SSL_CIPHER_standard_name" function is only available in OpenSSL when
// compiled with tracing, so we need to define the mapping manually here.
constexpr SslCipherMapEntry kSslCipherMap[] = {
    // TLS v1.0 ciphersuites from RFC2246.
    DEFINE_CIPHER_ENTRY_SSL3(RSA_RC4_128_SHA),
    {SSL3_CK_RSA_DES_192_CBC3_SHA, "TLS_RSA_WITH_3DES_EDE_CBC_SHA"},

    // AES ciphersuites from RFC3268.
    {TLS1_CK_RSA_WITH_AES_128_SHA, "TLS_RSA_WITH_AES_128_CBC_SHA"},
    {TLS1_CK_DHE_RSA_WITH_AES_128_SHA, "TLS_DHE_RSA_WITH_AES_128_CBC_SHA"},
    {TLS1_CK_RSA_WITH_AES_256_SHA, "TLS_RSA_WITH_AES_256_CBC_SHA"},
    {TLS1_CK_DHE_RSA_WITH_AES_256_SHA, "TLS_DHE_RSA_WITH_AES_256_CBC_SHA"},

    // ECC ciphersuites from RFC4492.
    DEFINE_CIPHER_ENTRY_TLS1(ECDHE_ECDSA_WITH_RC4_128_SHA),
    {TLS1_CK_ECDHE_ECDSA_WITH_DES_192_CBC3_SHA,
     "TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA"},
    DEFINE_CIPHER_ENTRY_TLS1(ECDHE_ECDSA_WITH_AES_128_CBC_SHA),
    DEFINE_CIPHER_ENTRY_TLS1(ECDHE_ECDSA_WITH_AES_256_CBC_SHA),

    DEFINE_CIPHER_ENTRY_TLS1(ECDHE_RSA_WITH_RC4_128_SHA),
    {TLS1_CK_ECDHE_RSA_WITH_DES_192_CBC3_SHA,
     "TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA"},
    DEFINE_CIPHER_ENTRY_TLS1(ECDHE_RSA_WITH_AES_128_CBC_SHA),
    DEFINE_CIPHER_ENTRY_TLS1(ECDHE_RSA_WITH_AES_256_CBC_SHA),

    // TLS v1.2 ciphersuites.
    {TLS1_CK_RSA_WITH_AES_128_SHA256, "TLS_RSA_WITH_AES_128_CBC_SHA256"},
    {TLS1_CK_RSA_WITH_AES_256_SHA256, "TLS_RSA_WITH_AES_256_CBC_SHA256"},
    {TLS1_CK_DHE_RSA_WITH_AES_128_SHA256,
     "TLS_DHE_RSA_WITH_AES_128_CBC_SHA256"},
    {TLS1_CK_DHE_RSA_WITH_AES_256_SHA256,
     "TLS_DHE_RSA_WITH_AES_256_CBC_SHA256"},

    // TLS v1.2 GCM ciphersuites from RFC5288.
    DEFINE_CIPHER_ENTRY_TLS1(RSA_WITH_AES_128_GCM_SHA256),
    DEFINE_CIPHER_ENTRY_TLS1(RSA_WITH_AES_256_GCM_SHA384),
    DEFINE_CIPHER_ENTRY_TLS1(DHE_RSA_WITH_AES_128_GCM_SHA256),
    DEFINE_CIPHER_ENTRY_TLS1(DHE_RSA_WITH_AES_256_GCM_SHA384),
    DEFINE_CIPHER_ENTRY_TLS1(DH_RSA_WITH_AES_128_GCM_SHA256),
    DEFINE_CIPHER_ENTRY_TLS1(DH_RSA_WITH_AES_256_GCM_SHA384),

    // ECDH HMAC based ciphersuites from RFC5289.
    {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_SHA256,
     "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256"},
    {TLS1_CK_ECDHE_ECDSA_WITH_AES_256_SHA384,
     "TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384"},
    {TLS1_CK_ECDHE_RSA_WITH_AES_128_SHA256,
     "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256"},
    {TLS1_CK_ECDHE_RSA_WITH_AES_256_SHA384,
     "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384"},

    // ECDH GCM based ciphersuites from RFC5289.
    DEFINE_CIPHER_ENTRY_TLS1(ECDHE_ECDSA_WITH_AES_128_GCM_SHA256),
    DEFINE_CIPHER_ENTRY_TLS1(ECDHE_ECDSA_WITH_AES_256_GCM_SHA384),
    DEFINE_CIPHER_ENTRY_TLS1(ECDHE_RSA_WITH_AES_128_GCM_SHA256),
    DEFINE_CIPHER_ENTRY_TLS1(ECDHE_RSA_WITH_AES_256_GCM_SHA384),

    {0, nullptr}};
#endif  // #ifndef OPENSSL_IS_BORINGSSL

#ifdef OPENSSL_IS_BORINGSSL
// Enabled by EnableTimeCallbackForTesting. Should never be set in production
// code.
bool g_use_time_callback_for_testing = false;
// Not used in production code. Actual time should be relative to Jan 1, 1970.
void TimeCallbackForTesting(const SSL* ssl, struct timeval* out_clock) {
  int64_t time = TimeNanos();
  out_clock->tv_sec = time / kNumNanosecsPerSec;
  out_clock->tv_usec = (time % kNumNanosecsPerSec) / kNumNanosecsPerMicrosec;
}
#endif

}  // namespace

//////////////////////////////////////////////////////////////////////
// StreamBIO
//////////////////////////////////////////////////////////////////////

static int stream_write(BIO* h, const char* buf, int num);
static int stream_read(BIO* h, char* buf, int size);
static int stream_puts(BIO* h, const char* str);
static long stream_ctrl(BIO* h, int cmd, long arg1, void* arg2);
static int stream_new(BIO* h);
static int stream_free(BIO* data);

static BIO_METHOD* BIO_stream_method() {
  static BIO_METHOD* method = [] {
    BIO_METHOD* method = BIO_meth_new(BIO_TYPE_BIO, "stream");
    BIO_meth_set_write(method, stream_write);
    BIO_meth_set_read(method, stream_read);
    BIO_meth_set_puts(method, stream_puts);
    BIO_meth_set_ctrl(method, stream_ctrl);
    BIO_meth_set_create(method, stream_new);
    BIO_meth_set_destroy(method, stream_free);
    return method;
  }();
  return method;
}

static BIO* BIO_new_stream(StreamInterface* stream) {
  BIO* ret = BIO_new(BIO_stream_method());
  if (ret == nullptr) {
    return nullptr;
  }
  BIO_set_data(ret, stream);
  return ret;
}

// bio methods return 1 (or at least non-zero) on success and 0 on failure.

static int stream_new(BIO* b) {
  BIO_set_shutdown(b, 0);
  BIO_set_init(b, 1);
  BIO_set_data(b, 0);
  return 1;
}

static int stream_free(BIO* b) {
  if (b == nullptr) {
    return 0;
  }
  return 1;
}

static int stream_read(BIO* b, char* out, int outl) {
  if (!out) {
    return -1;
  }
  StreamInterface* stream = static_cast<StreamInterface*>(BIO_get_data(b));
  BIO_clear_retry_flags(b);
  size_t read;
  int error;
  StreamResult result = stream->Read(out, outl, &read, &error);
  if (result == SR_SUCCESS) {
    return checked_cast<int>(read);
  } else if (result == SR_BLOCK) {
    BIO_set_retry_read(b);
  }
  return -1;
}

static int stream_write(BIO* b, const char* in, int inl) {
  if (!in) {
    return -1;
  }
  StreamInterface* stream = static_cast<StreamInterface*>(BIO_get_data(b));
  BIO_clear_retry_flags(b);
  size_t written;
  int error;
  StreamResult result = stream->Write(in, inl, &written, &error);
  if (result == SR_SUCCESS) {
    return checked_cast<int>(written);
  } else if (result == SR_BLOCK) {
    BIO_set_retry_write(b);
  }
  return -1;
}

static int stream_puts(BIO* b, const char* str) {
  return stream_write(b, str, checked_cast<int>(strlen(str)));
}

static long stream_ctrl(BIO* b, int cmd, long num, void* ptr) {
  switch (cmd) {
    case BIO_CTRL_RESET:
      return 0;
    case BIO_CTRL_EOF: {
      StreamInterface* stream = static_cast<StreamInterface*>(ptr);
      // 1 means end-of-stream.
      return (stream->GetState() == SS_CLOSED) ? 1 : 0;
    }
    case BIO_CTRL_WPENDING:
    case BIO_CTRL_PENDING:
      return 0;
    case BIO_CTRL_FLUSH:
      return 1;
    case BIO_CTRL_DGRAM_QUERY_MTU:
      // openssl defaults to mtu=256 unless we return something here.
      // The handshake doesn't actually need to send packets above 1k,
      // so this seems like a sensible value that should work in most cases.
      // Webrtc uses the same value for video packets.
      return 1200;
    default:
      return 0;
  }
}

/////////////////////////////////////////////////////////////////////////////
// OpenSSLStreamAdapter
/////////////////////////////////////////////////////////////////////////////

static std::atomic<bool> g_use_legacy_tls_protocols_override(false);
static std::atomic<bool> g_allow_legacy_tls_protocols(false);

void SetAllowLegacyTLSProtocols(const absl::optional<bool>& allow) {
  g_use_legacy_tls_protocols_override.store(allow.has_value());
  if (allow.has_value())
    g_allow_legacy_tls_protocols.store(allow.value());
}

bool ShouldAllowLegacyTLSProtocols() {
  return g_use_legacy_tls_protocols_override.load()
             ? g_allow_legacy_tls_protocols.load()
             : webrtc::field_trial::IsEnabled("WebRTC-LegacyTlsProtocols");
}

OpenSSLStreamAdapter::OpenSSLStreamAdapter(
    std::unique_ptr<StreamInterface> stream)
    : stream_(std::move(stream)),
      owner_(rtc::Thread::Current()),
      state_(SSL_NONE),
      role_(SSL_CLIENT),
      ssl_read_needs_write_(false),
      ssl_write_needs_read_(false),
      ssl_(nullptr),
      ssl_ctx_(nullptr),
      ssl_mode_(SSL_MODE_TLS),
      ssl_max_version_(SSL_PROTOCOL_TLS_12),
      // Default is to support legacy TLS protocols.
      // This will be changed to default non-support in M82 or M83.
      support_legacy_tls_protocols_flag_(ShouldAllowLegacyTLSProtocols()) {
  stream_->SignalEvent.connect(this, &OpenSSLStreamAdapter::OnEvent);
}

OpenSSLStreamAdapter::~OpenSSLStreamAdapter() {
  timeout_task_.Stop();
  Cleanup(0);
}

void OpenSSLStreamAdapter::SetIdentity(std::unique_ptr<SSLIdentity> identity) {
  RTC_DCHECK(!identity_);
#ifdef OPENSSL_IS_BORINGSSL
  identity_.reset(static_cast<BoringSSLIdentity*>(identity.release()));
#else
  identity_.reset(static_cast<OpenSSLIdentity*>(identity.release()));
#endif
}

SSLIdentity* OpenSSLStreamAdapter::GetIdentityForTesting() const {
  return identity_.get();
}

void OpenSSLStreamAdapter::SetServerRole(SSLRole role) {
  role_ = role;
}

bool OpenSSLStreamAdapter::SetPeerCertificateDigest(
    const std::string& digest_alg,
    const unsigned char* digest_val,
    size_t digest_len,
    SSLPeerCertificateDigestError* error) {
  RTC_DCHECK(!peer_certificate_verified_);
  RTC_DCHECK(!HasPeerCertificateDigest());
  size_t expected_len;
  if (error) {
    *error = SSLPeerCertificateDigestError::NONE;
  }

  if (!OpenSSLDigest::GetDigestSize(digest_alg, &expected_len)) {
    RTC_LOG(LS_WARNING) << "Unknown digest algorithm: " << digest_alg;
    if (error) {
      *error = SSLPeerCertificateDigestError::UNKNOWN_ALGORITHM;
    }
    return false;
  }
  if (expected_len != digest_len) {
    if (error) {
      *error = SSLPeerCertificateDigestError::INVALID_LENGTH;
    }
    return false;
  }

  peer_certificate_digest_value_.SetData(digest_val, digest_len);
  peer_certificate_digest_algorithm_ = digest_alg;

  if (!peer_cert_chain_) {
    // Normal case, where the digest is set before we obtain the certificate
    // from the handshake.
    return true;
  }

  if (!VerifyPeerCertificate()) {
    Error("SetPeerCertificateDigest", -1, SSL_AD_BAD_CERTIFICATE, false);
    if (error) {
      *error = SSLPeerCertificateDigestError::VERIFICATION_FAILED;
    }
    return false;
  }

  if (state_ == SSL_CONNECTED) {
    // Post the event asynchronously to unwind the stack. The caller
    // of ContinueSSL may be the same object listening for these
    // events and may not be prepared for reentrancy.
    PostEvent(SE_OPEN | SE_READ | SE_WRITE, 0);
  }

  return true;
}

std::string OpenSSLStreamAdapter::SslCipherSuiteToName(int cipher_suite) {
#ifdef OPENSSL_IS_BORINGSSL
  const SSL_CIPHER* ssl_cipher = SSL_get_cipher_by_value(cipher_suite);
  if (!ssl_cipher) {
    return std::string();
  }
  return SSL_CIPHER_standard_name(ssl_cipher);
#else
  for (const SslCipherMapEntry* entry = kSslCipherMap; entry->rfc_name;
       ++entry) {
    if (cipher_suite == static_cast<int>(entry->openssl_id)) {
      return entry->rfc_name;
    }
  }
  return std::string();
#endif
}

bool OpenSSLStreamAdapter::GetSslCipherSuite(int* cipher_suite) {
  if (state_ != SSL_CONNECTED) {
    return false;
  }

  const SSL_CIPHER* current_cipher = SSL_get_current_cipher(ssl_);
  if (current_cipher == nullptr) {
    return false;
  }

  *cipher_suite = static_cast<uint16_t>(SSL_CIPHER_get_id(current_cipher));
  return true;
}

SSLProtocolVersion OpenSSLStreamAdapter::GetSslVersion() const {
  if (state_ != SSL_CONNECTED) {
    return SSL_PROTOCOL_NOT_GIVEN;
  }

  int ssl_version = SSL_version(ssl_);
  if (ssl_mode_ == SSL_MODE_DTLS) {
    if (ssl_version == DTLS1_VERSION) {
      return SSL_PROTOCOL_DTLS_10;
    } else if (ssl_version == DTLS1_2_VERSION) {
      return SSL_PROTOCOL_DTLS_12;
    }
  } else {
    if (ssl_version == TLS1_VERSION) {
      return SSL_PROTOCOL_TLS_10;
    } else if (ssl_version == TLS1_1_VERSION) {
      return SSL_PROTOCOL_TLS_11;
    } else if (ssl_version == TLS1_2_VERSION) {
      return SSL_PROTOCOL_TLS_12;
    }
  }

  return SSL_PROTOCOL_NOT_GIVEN;
}

bool OpenSSLStreamAdapter::GetSslVersionBytes(int* version) const {
  if (state_ != SSL_CONNECTED) {
    return false;
  }
  *version = SSL_version(ssl_);
  return true;
}

// Key Extractor interface
bool OpenSSLStreamAdapter::ExportKeyingMaterial(const std::string& label,
                                                const uint8_t* context,
                                                size_t context_len,
                                                bool use_context,
                                                uint8_t* result,
                                                size_t result_len) {
  if (SSL_export_keying_material(ssl_, result, result_len, label.c_str(),
                                 label.length(), const_cast<uint8_t*>(context),
                                 context_len, use_context) != 1) {
    return false;
  }
  return true;
}

bool OpenSSLStreamAdapter::SetDtlsSrtpCryptoSuites(
    const std::vector<int>& ciphers) {
  if (state_ != SSL_NONE) {
    return false;
  }

  std::string internal_ciphers;
  for (const int cipher : ciphers) {
    bool found = false;
    for (const auto& entry : kSrtpCipherMap) {
      if (cipher == entry.id) {
        found = true;
        if (!internal_ciphers.empty()) {
          internal_ciphers += ":";
        }
        internal_ciphers += entry.internal_name;
        break;
      }
    }

    if (!found) {
      RTC_LOG(LS_ERROR) << "Could not find cipher: " << cipher;
      return false;
    }
  }

  if (internal_ciphers.empty()) {
    return false;
  }

  srtp_ciphers_ = internal_ciphers;
  return true;
}

bool OpenSSLStreamAdapter::GetDtlsSrtpCryptoSuite(int* crypto_suite) {
  RTC_DCHECK(state_ == SSL_CONNECTED);
  if (state_ != SSL_CONNECTED) {
    return false;
  }

  const SRTP_PROTECTION_PROFILE* srtp_profile =
      SSL_get_selected_srtp_profile(ssl_);

  if (!srtp_profile) {
    return false;
  }

  *crypto_suite = srtp_profile->id;
  RTC_DCHECK(!SrtpCryptoSuiteToName(*crypto_suite).empty());
  return true;
}

bool OpenSSLStreamAdapter::IsTlsConnected() {
  return state_ == SSL_CONNECTED;
}

int OpenSSLStreamAdapter::StartSSL() {
  // Don't allow StartSSL to be called twice.
  if (state_ != SSL_NONE) {
    return -1;
  }

  if (stream_->GetState() != SS_OPEN) {
    state_ = SSL_WAIT;
    return 0;
  }

  state_ = SSL_CONNECTING;
  if (int err = BeginSSL()) {
    Error("BeginSSL", err, 0, false);
    return err;
  }

  return 0;
}

void OpenSSLStreamAdapter::SetMode(SSLMode mode) {
  RTC_DCHECK(state_ == SSL_NONE);
  ssl_mode_ = mode;
}

void OpenSSLStreamAdapter::SetMaxProtocolVersion(SSLProtocolVersion version) {
  RTC_DCHECK(ssl_ctx_ == nullptr);
  ssl_max_version_ = version;
}

void OpenSSLStreamAdapter::SetInitialRetransmissionTimeout(int timeout_ms) {
  RTC_DCHECK(ssl_ctx_ == nullptr);
  dtls_handshake_timeout_ms_ = timeout_ms;
}

//
// StreamInterface Implementation
//

StreamResult OpenSSLStreamAdapter::Write(const void* data,
                                         size_t data_len,
                                         size_t* written,
                                         int* error) {
  RTC_DLOG(LS_VERBOSE) << "OpenSSLStreamAdapter::Write(" << data_len << ")";

  switch (state_) {
    case SSL_NONE:
      // pass-through in clear text
      return stream_->Write(data, data_len, written, error);

    case SSL_WAIT:
    case SSL_CONNECTING:
      return SR_BLOCK;

    case SSL_CONNECTED:
      if (WaitingToVerifyPeerCertificate()) {
        return SR_BLOCK;
      }
      break;

    case SSL_ERROR:
    case SSL_CLOSED:
    default:
      if (error) {
        *error = ssl_error_code_;
      }
      return SR_ERROR;
  }

  // OpenSSL will return an error if we try to write zero bytes
  if (data_len == 0) {
    if (written) {
      *written = 0;
    }
    return SR_SUCCESS;
  }

  ssl_write_needs_read_ = false;

  int code = SSL_write(ssl_, data, checked_cast<int>(data_len));
  int ssl_error = SSL_get_error(ssl_, code);
  switch (ssl_error) {
    case SSL_ERROR_NONE:
      RTC_DLOG(LS_VERBOSE) << " -- success";
      RTC_DCHECK_GT(code, 0);
      RTC_DCHECK_LE(code, data_len);
      if (written)
        *written = code;
      return SR_SUCCESS;
    case SSL_ERROR_WANT_READ:
      RTC_DLOG(LS_VERBOSE) << " -- error want read";
      ssl_write_needs_read_ = true;
      return SR_BLOCK;
    case SSL_ERROR_WANT_WRITE:
      RTC_DLOG(LS_VERBOSE) << " -- error want write";
      return SR_BLOCK;

    case SSL_ERROR_ZERO_RETURN:
    default:
      Error("SSL_write", (ssl_error ? ssl_error : -1), 0, false);
      if (error) {
        *error = ssl_error_code_;
      }
      return SR_ERROR;
  }
  // not reached
}

StreamResult OpenSSLStreamAdapter::Read(void* data,
                                        size_t data_len,
                                        size_t* read,
                                        int* error) {
  RTC_DLOG(LS_VERBOSE) << "OpenSSLStreamAdapter::Read(" << data_len << ")";
  switch (state_) {
    case SSL_NONE:
      // pass-through in clear text
      return stream_->Read(data, data_len, read, error);
    case SSL_WAIT:
    case SSL_CONNECTING:
      return SR_BLOCK;
    case SSL_CONNECTED:
      if (WaitingToVerifyPeerCertificate()) {
        return SR_BLOCK;
      }
      break;
    case SSL_CLOSED:
      return SR_EOS;
    case SSL_ERROR:
    default:
      if (error) {
        *error = ssl_error_code_;
      }
      return SR_ERROR;
  }

  // Don't trust OpenSSL with zero byte reads
  if (data_len == 0) {
    if (read) {
      *read = 0;
    }
    return SR_SUCCESS;
  }

  ssl_read_needs_write_ = false;

  const int code = SSL_read(ssl_, data, checked_cast<int>(data_len));
  const int ssl_error = SSL_get_error(ssl_, code);

  switch (ssl_error) {
    case SSL_ERROR_NONE:
      RTC_DLOG(LS_VERBOSE) << " -- success";
      RTC_DCHECK_GT(code, 0);
      RTC_DCHECK_LE(code, data_len);
      if (read) {
        *read = code;
      }

      if (ssl_mode_ == SSL_MODE_DTLS) {
        // Enforce atomic reads -- this is a short read
        unsigned int pending = SSL_pending(ssl_);

        if (pending) {
          RTC_DLOG(LS_INFO) << " -- short DTLS read. flushing";
          FlushInput(pending);
          if (error) {
            *error = SSE_MSG_TRUNC;
          }
          return SR_ERROR;
        }
      }
      return SR_SUCCESS;
    case SSL_ERROR_WANT_READ:
      RTC_DLOG(LS_VERBOSE) << " -- error want read";
      return SR_BLOCK;
    case SSL_ERROR_WANT_WRITE:
      RTC_DLOG(LS_VERBOSE) << " -- error want write";
      ssl_read_needs_write_ = true;
      return SR_BLOCK;
    case SSL_ERROR_ZERO_RETURN:
      RTC_DLOG(LS_VERBOSE) << " -- remote side closed";
      Close();
      return SR_EOS;
    default:
      Error("SSL_read", (ssl_error ? ssl_error : -1), 0, false);
      if (error) {
        *error = ssl_error_code_;
      }
      return SR_ERROR;
  }
  // not reached
}

void OpenSSLStreamAdapter::FlushInput(unsigned int left) {
  unsigned char buf[2048];

  while (left) {
    // This should always succeed
    const int toread = (sizeof(buf) < left) ? sizeof(buf) : left;
    const int code = SSL_read(ssl_, buf, toread);

    const int ssl_error = SSL_get_error(ssl_, code);
    RTC_DCHECK(ssl_error == SSL_ERROR_NONE);

    if (ssl_error != SSL_ERROR_NONE) {
      RTC_DLOG(LS_VERBOSE) << " -- error " << code;
      Error("SSL_read", (ssl_error ? ssl_error : -1), 0, false);
      return;
    }

    RTC_DLOG(LS_VERBOSE) << " -- flushed " << code << " bytes";
    left -= code;
  }
}

void OpenSSLStreamAdapter::Close() {
  Cleanup(0);
  RTC_DCHECK(state_ == SSL_CLOSED || state_ == SSL_ERROR);
  // When we're closed at SSL layer, also close the stream level which
  // performs necessary clean up. Otherwise, a new incoming packet after
  // this could overflow the stream buffer.
  stream_->Close();
}

StreamState OpenSSLStreamAdapter::GetState() const {
  switch (state_) {
    case SSL_WAIT:
    case SSL_CONNECTING:
      return SS_OPENING;
    case SSL_CONNECTED:
      if (WaitingToVerifyPeerCertificate()) {
        return SS_OPENING;
      }
      return SS_OPEN;
    default:
      return SS_CLOSED;
  }
  // not reached
}

void OpenSSLStreamAdapter::OnEvent(StreamInterface* stream,
                                   int events,
                                   int err) {
  int events_to_signal = 0;
  int signal_error = 0;
  RTC_DCHECK(stream == stream_.get());

  if ((events & SE_OPEN)) {
    RTC_DLOG(LS_VERBOSE) << "OpenSSLStreamAdapter::OnEvent SE_OPEN";
    if (state_ != SSL_WAIT) {
      RTC_DCHECK(state_ == SSL_NONE);
      events_to_signal |= SE_OPEN;
    } else {
      state_ = SSL_CONNECTING;
      if (int err = BeginSSL()) {
        Error("BeginSSL", err, 0, true);
        return;
      }
    }
  }

  if ((events & (SE_READ | SE_WRITE))) {
    RTC_DLOG(LS_VERBOSE) << "OpenSSLStreamAdapter::OnEvent"
                         << ((events & SE_READ) ? " SE_READ" : "")
                         << ((events & SE_WRITE) ? " SE_WRITE" : "");
    if (state_ == SSL_NONE) {
      events_to_signal |= events & (SE_READ | SE_WRITE);
    } else if (state_ == SSL_CONNECTING) {
      if (int err = ContinueSSL()) {
        Error("ContinueSSL", err, 0, true);
        return;
      }
    } else if (state_ == SSL_CONNECTED) {
      if (((events & SE_READ) && ssl_write_needs_read_) ||
          (events & SE_WRITE)) {
        RTC_DLOG(LS_VERBOSE) << " -- onStreamWriteable";
        events_to_signal |= SE_WRITE;
      }
      if (((events & SE_WRITE) && ssl_read_needs_write_) ||
          (events & SE_READ)) {
        RTC_DLOG(LS_VERBOSE) << " -- onStreamReadable";
        events_to_signal |= SE_READ;
      }
    }
  }

  if ((events & SE_CLOSE)) {
    RTC_DLOG(LS_VERBOSE) << "OpenSSLStreamAdapter::OnEvent(SE_CLOSE, " << err
                         << ")";
    Cleanup(0);
    events_to_signal |= SE_CLOSE;
    // SE_CLOSE is the only event that uses the final parameter to OnEvent().
    RTC_DCHECK(signal_error == 0);
    signal_error = err;
  }

  if (events_to_signal) {
    // Note that the adapter presents itself as the origin of the stream events,
    // since users of the adapter may not recognize the adapted object.
    SignalEvent(this, events_to_signal, signal_error);
  }
}

void OpenSSLStreamAdapter::PostEvent(int events, int err) {
  owner_->PostTask(webrtc::ToQueuedTask(
      task_safety_, [this, events, err]() { SignalEvent(this, events, err); }));
}

void OpenSSLStreamAdapter::SetTimeout(int delay_ms) {
  // We need to accept 0 delay here as well as >0 delay, because
  // DTLSv1_get_timeout seems to frequently return 0 ms.
  RTC_DCHECK_GE(delay_ms, 0);
  RTC_DCHECK(!timeout_task_.Running());

  timeout_task_ = webrtc::RepeatingTaskHandle::DelayedStart(
      owner_, webrtc::TimeDelta::Millis(delay_ms),
      [flag = task_safety_.flag(), this]() {
        if (flag->alive()) {
          RTC_DLOG(LS_INFO) << "DTLS timeout expired";
          timeout_task_.Stop();
          int res = DTLSv1_handle_timeout(ssl_);
          if (res > 0) {
            RTC_LOG(LS_INFO) << "DTLS retransmission";
          } else if (res < 0) {
            RTC_LOG(LS_INFO) << "DTLSv1_handle_timeout() return -1";
          }
          ContinueSSL();
        } else {
          RTC_NOTREACHED();
        }
        // This callback will never run again (stopped above).
        return webrtc::TimeDelta::PlusInfinity();
      });
}

int OpenSSLStreamAdapter::BeginSSL() {
  RTC_DCHECK(state_ == SSL_CONNECTING);
  // The underlying stream has opened.
  RTC_DLOG(LS_INFO) << "BeginSSL with peer.";

  BIO* bio = nullptr;

  // First set up the context.
  RTC_DCHECK(ssl_ctx_ == nullptr);
  ssl_ctx_ = SetupSSLContext();
  if (!ssl_ctx_) {
    return -1;
  }

  bio = BIO_new_stream(stream_.get());
  if (!bio) {
    return -1;
  }

  ssl_ = SSL_new(ssl_ctx_);
  if (!ssl_) {
    BIO_free(bio);
    return -1;
  }

  SSL_set_app_data(ssl_, this);

  SSL_set_bio(ssl_, bio, bio);  // the SSL object owns the bio now.
  if (ssl_mode_ == SSL_MODE_DTLS) {
#ifdef OPENSSL_IS_BORINGSSL
    DTLSv1_set_initial_timeout_duration(ssl_, dtls_handshake_timeout_ms_);
#else
    // Enable read-ahead for DTLS so whole packets are read from internal BIO
    // before parsing. This is done internally by BoringSSL for DTLS.
    SSL_set_read_ahead(ssl_, 1);
#endif
  }

  SSL_set_mode(ssl_, SSL_MODE_ENABLE_PARTIAL_WRITE |
                         SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER);

  // Do the connect
  return ContinueSSL();
}

int OpenSSLStreamAdapter::ContinueSSL() {
  RTC_DLOG(LS_VERBOSE) << "ContinueSSL";
  RTC_DCHECK(state_ == SSL_CONNECTING);

  // Clear the DTLS timer
  timeout_task_.Stop();

  const int code = (role_ == SSL_CLIENT) ? SSL_connect(ssl_) : SSL_accept(ssl_);
  const int ssl_error = SSL_get_error(ssl_, code);

  switch (ssl_error) {
    case SSL_ERROR_NONE:
      RTC_DLOG(LS_VERBOSE) << " -- success";
      // By this point, OpenSSL should have given us a certificate, or errored
      // out if one was missing.
      RTC_DCHECK(peer_cert_chain_ || !GetClientAuthEnabled());

      state_ = SSL_CONNECTED;
      if (!WaitingToVerifyPeerCertificate()) {
        // We have everything we need to start the connection, so signal
        // SE_OPEN. If we need a client certificate fingerprint and don't have
        // it yet, we'll instead signal SE_OPEN in SetPeerCertificateDigest.
        //
        // TODO(deadbeef): Post this event asynchronously to unwind the stack.
        // The caller of ContinueSSL may be the same object listening for these
        // events and may not be prepared for reentrancy.
        // PostEvent(SE_OPEN | SE_READ | SE_WRITE, 0);
        SignalEvent(this, SE_OPEN | SE_READ | SE_WRITE, 0);
      }
      break;

    case SSL_ERROR_WANT_READ: {
      RTC_DLOG(LS_VERBOSE) << " -- error want read";
      struct timeval timeout;
      if (DTLSv1_get_timeout(ssl_, &timeout)) {
        int delay = timeout.tv_sec * 1000 + timeout.tv_usec / 1000;
        SetTimeout(delay);
      }
    } break;

    case SSL_ERROR_WANT_WRITE:
      RTC_DLOG(LS_VERBOSE) << " -- error want write";
      break;

    case SSL_ERROR_ZERO_RETURN:
    default:
      SSLHandshakeError ssl_handshake_err = SSLHandshakeError::UNKNOWN;
      int err_code = ERR_peek_last_error();
      if (err_code != 0 && ERR_GET_REASON(err_code) == SSL_R_NO_SHARED_CIPHER) {
        ssl_handshake_err = SSLHandshakeError::INCOMPATIBLE_CIPHERSUITE;
      }
      RTC_DLOG(LS_VERBOSE) << " -- error " << code << ", " << err_code << ", "
                           << ERR_GET_REASON(err_code);
      SignalSSLHandshakeError(ssl_handshake_err);
      return (ssl_error != 0) ? ssl_error : -1;
  }

  return 0;
}

void OpenSSLStreamAdapter::Error(const char* context,
                                 int err,
                                 uint8_t alert,
                                 bool signal) {
  RTC_LOG(LS_WARNING) << "OpenSSLStreamAdapter::Error(" << context << ", "
                      << err << ", " << static_cast<int>(alert) << ")";
  state_ = SSL_ERROR;
  ssl_error_code_ = err;
  Cleanup(alert);
  if (signal) {
    SignalEvent(this, SE_CLOSE, err);
  }
}

void OpenSSLStreamAdapter::Cleanup(uint8_t alert) {
  RTC_DLOG(LS_INFO) << "Cleanup";

  if (state_ != SSL_ERROR) {
    state_ = SSL_CLOSED;
    ssl_error_code_ = 0;
  }

  if (ssl_) {
    int ret;
// SSL_send_fatal_alert is only available in BoringSSL.
#ifdef OPENSSL_IS_BORINGSSL
    if (alert) {
      ret = SSL_send_fatal_alert(ssl_, alert);
      if (ret < 0) {
        RTC_LOG(LS_WARNING) << "SSL_send_fatal_alert failed, error = "
                            << SSL_get_error(ssl_, ret);
      }
    } else {
#endif
      ret = SSL_shutdown(ssl_);
      if (ret < 0) {
        RTC_LOG(LS_WARNING)
            << "SSL_shutdown failed, error = " << SSL_get_error(ssl_, ret);
      }
#ifdef OPENSSL_IS_BORINGSSL
    }
#endif
    SSL_free(ssl_);
    ssl_ = nullptr;
  }
  if (ssl_ctx_) {
    SSL_CTX_free(ssl_ctx_);
    ssl_ctx_ = nullptr;
  }
  identity_.reset();
  peer_cert_chain_.reset();

  // Clear the DTLS timer
  timeout_task_.Stop();
}

SSL_CTX* OpenSSLStreamAdapter::SetupSSLContext() {
#ifdef OPENSSL_IS_BORINGSSL
  // If X509 objects aren't used, we can use these methods to avoid
  // linking the sizable crypto/x509 code, using CRYPTO_BUFFER instead.
  SSL_CTX* ctx =
      SSL_CTX_new(ssl_mode_ == SSL_MODE_DTLS ? DTLS_with_buffers_method()
                                             : TLS_with_buffers_method());
#else
  SSL_CTX* ctx =
      SSL_CTX_new(ssl_mode_ == SSL_MODE_DTLS ? DTLS_method() : TLS_method());
#endif
  if (ctx == nullptr) {
    return nullptr;
  }

  if (support_legacy_tls_protocols_flag_) {
    // TODO(https://bugs.webrtc.org/10261): Completely remove this branch in
    // M84.
    SSL_CTX_set_min_proto_version(
        ctx, ssl_mode_ == SSL_MODE_DTLS ? DTLS1_VERSION : TLS1_VERSION);
    switch (ssl_max_version_) {
      case SSL_PROTOCOL_TLS_10:
        SSL_CTX_set_max_proto_version(
            ctx, ssl_mode_ == SSL_MODE_DTLS ? DTLS1_VERSION : TLS1_VERSION);
        break;
      case SSL_PROTOCOL_TLS_11:
        SSL_CTX_set_max_proto_version(
            ctx, ssl_mode_ == SSL_MODE_DTLS ? DTLS1_VERSION : TLS1_1_VERSION);
        break;
      case SSL_PROTOCOL_TLS_12:
      default:
        SSL_CTX_set_max_proto_version(
            ctx, ssl_mode_ == SSL_MODE_DTLS ? DTLS1_2_VERSION : TLS1_2_VERSION);
        break;
    }
  } else {
    // TODO(https://bugs.webrtc.org/10261): Make this the default in M84.
    SSL_CTX_set_min_proto_version(
        ctx, ssl_mode_ == SSL_MODE_DTLS ? DTLS1_2_VERSION : TLS1_2_VERSION);
    SSL_CTX_set_max_proto_version(
        ctx, ssl_mode_ == SSL_MODE_DTLS ? DTLS1_2_VERSION : TLS1_2_VERSION);
  }

#ifdef OPENSSL_IS_BORINGSSL
  // SSL_CTX_set_current_time_cb is only supported in BoringSSL.
  if (g_use_time_callback_for_testing) {
    SSL_CTX_set_current_time_cb(ctx, &TimeCallbackForTesting);
  }
  SSL_CTX_set0_buffer_pool(ctx, openssl::GetBufferPool());
#endif

  if (identity_ && !identity_->ConfigureIdentity(ctx)) {
    SSL_CTX_free(ctx);
    return nullptr;
  }

#if !defined(NDEBUG)
  SSL_CTX_set_info_callback(ctx, OpenSSLAdapter::SSLInfoCallback);
#endif

  int mode = SSL_VERIFY_PEER;
  if (GetClientAuthEnabled()) {
    // Require a certificate from the client.
    // Note: Normally this is always true in production, but it may be disabled
    // for testing purposes (e.g. SSLAdapter unit tests).
    mode |= SSL_VERIFY_FAIL_IF_NO_PEER_CERT;
  }

  // Configure a custom certificate verification callback to check the peer
  // certificate digest.
#ifdef OPENSSL_IS_BORINGSSL
  // Use CRYPTO_BUFFER version of the callback if building with BoringSSL.
  SSL_CTX_set_custom_verify(ctx, mode, SSLVerifyCallback);
#else
  // Note the second argument to SSL_CTX_set_verify is to override individual
  // errors in the default verification logic, which is not what we want here.
  SSL_CTX_set_verify(ctx, mode, nullptr);
  SSL_CTX_set_cert_verify_callback(ctx, SSLVerifyCallback, nullptr);
#endif

  // Select list of available ciphers. Note that !SHA256 and !SHA384 only
  // remove HMAC-SHA256 and HMAC-SHA384 cipher suites, not GCM cipher suites
  // with SHA256 or SHA384 as the handshake hash.
  // This matches the list of SSLClientSocketOpenSSL in Chromium.
  SSL_CTX_set_cipher_list(
      ctx, "DEFAULT:!NULL:!aNULL:!SHA256:!SHA384:!aECDH:!AESGCM+AES256:!aPSK");

  if (!srtp_ciphers_.empty()) {
    if (SSL_CTX_set_tlsext_use_srtp(ctx, srtp_ciphers_.c_str())) {
      SSL_CTX_free(ctx);
      return nullptr;
    }
  }

  return ctx;
}

bool OpenSSLStreamAdapter::VerifyPeerCertificate() {
  if (!HasPeerCertificateDigest() || !peer_cert_chain_ ||
      !peer_cert_chain_->GetSize()) {
    RTC_LOG(LS_WARNING) << "Missing digest or peer certificate.";
    return false;
  }

  unsigned char digest[EVP_MAX_MD_SIZE];
  size_t digest_length;
  if (!peer_cert_chain_->Get(0).ComputeDigest(
          peer_certificate_digest_algorithm_, digest, sizeof(digest),
          &digest_length)) {
    RTC_LOG(LS_WARNING) << "Failed to compute peer cert digest.";
    return false;
  }

  Buffer computed_digest(digest, digest_length);
  if (computed_digest != peer_certificate_digest_value_) {
    RTC_LOG(LS_WARNING)
        << "Rejected peer certificate due to mismatched digest.";
    return false;
  }
  // Ignore any verification error if the digest matches, since there is no
  // value in checking the validity of a self-signed cert issued by untrusted
  // sources.
  RTC_DLOG(LS_INFO) << "Accepted peer certificate.";
  peer_certificate_verified_ = true;
  return true;
}

std::unique_ptr<SSLCertChain> OpenSSLStreamAdapter::GetPeerSSLCertChain()
    const {
  return peer_cert_chain_ ? peer_cert_chain_->Clone() : nullptr;
}

#ifdef OPENSSL_IS_BORINGSSL
enum ssl_verify_result_t OpenSSLStreamAdapter::SSLVerifyCallback(
    SSL* ssl,
    uint8_t* out_alert) {
  // Get our OpenSSLStreamAdapter from the context.
  OpenSSLStreamAdapter* stream =
      reinterpret_cast<OpenSSLStreamAdapter*>(SSL_get_app_data(ssl));
  const STACK_OF(CRYPTO_BUFFER)* chain = SSL_get0_peer_certificates(ssl);
  // Creates certificate chain.
  std::vector<std::unique_ptr<SSLCertificate>> cert_chain;
  for (CRYPTO_BUFFER* cert : chain) {
    cert_chain.emplace_back(new BoringSSLCertificate(bssl::UpRef(cert)));
  }
  stream->peer_cert_chain_.reset(new SSLCertChain(std::move(cert_chain)));

  // If the peer certificate digest isn't known yet, we'll wait to verify
  // until it's known, and for now just return a success status.
  if (stream->peer_certificate_digest_algorithm_.empty()) {
    RTC_LOG(LS_INFO) << "Waiting to verify certificate until digest is known.";
    // TODO(deadbeef): Use ssl_verify_retry?
    return ssl_verify_ok;
  }

  if (!stream->VerifyPeerCertificate()) {
    return ssl_verify_invalid;
  }

  return ssl_verify_ok;
}
#else   // OPENSSL_IS_BORINGSSL
int OpenSSLStreamAdapter::SSLVerifyCallback(X509_STORE_CTX* store, void* arg) {
  // Get our SSL structure and OpenSSLStreamAdapter from the store.
  SSL* ssl = reinterpret_cast<SSL*>(
      X509_STORE_CTX_get_ex_data(store, SSL_get_ex_data_X509_STORE_CTX_idx()));
  OpenSSLStreamAdapter* stream =
      reinterpret_cast<OpenSSLStreamAdapter*>(SSL_get_app_data(ssl));

  // Record the peer's certificate.
  X509* cert = X509_STORE_CTX_get0_cert(store);
  stream->peer_cert_chain_.reset(
      new SSLCertChain(std::make_unique<OpenSSLCertificate>(cert)));

  // If the peer certificate digest isn't known yet, we'll wait to verify
  // until it's known, and for now just return a success status.
  if (stream->peer_certificate_digest_algorithm_.empty()) {
    RTC_DLOG(LS_INFO) << "Waiting to verify certificate until digest is known.";
    return 1;
  }

  if (!stream->VerifyPeerCertificate()) {
    X509_STORE_CTX_set_error(store, X509_V_ERR_CERT_REJECTED);
    return 0;
  }

  return 1;
}
#endif  // !OPENSSL_IS_BORINGSSL

bool OpenSSLStreamAdapter::IsBoringSsl() {
#ifdef OPENSSL_IS_BORINGSSL
  return true;
#else
  return false;
#endif
}

#define CDEF(X) \
  { static_cast<uint16_t>(TLS1_CK_##X & 0xffff), "TLS_" #X }

struct cipher_list {
  uint16_t cipher;
  const char* cipher_str;
};

// TODO(torbjorng): Perhaps add more cipher suites to these lists.
static const cipher_list OK_RSA_ciphers[] = {
    CDEF(ECDHE_RSA_WITH_AES_128_CBC_SHA),
    CDEF(ECDHE_RSA_WITH_AES_256_CBC_SHA),
    CDEF(ECDHE_RSA_WITH_AES_128_GCM_SHA256),
#ifdef TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA256
    CDEF(ECDHE_RSA_WITH_AES_256_GCM_SHA256),
#endif
#ifdef TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
    CDEF(ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256),
#endif
};

static const cipher_list OK_ECDSA_ciphers[] = {
    CDEF(ECDHE_ECDSA_WITH_AES_128_CBC_SHA),
    CDEF(ECDHE_ECDSA_WITH_AES_256_CBC_SHA),
    CDEF(ECDHE_ECDSA_WITH_AES_128_GCM_SHA256),
#ifdef TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA256
    CDEF(ECDHE_ECDSA_WITH_AES_256_GCM_SHA256),
#endif
#ifdef TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
    CDEF(ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256),
#endif
};
#undef CDEF

bool OpenSSLStreamAdapter::IsAcceptableCipher(int cipher, KeyType key_type) {
  if (key_type == KT_RSA) {
    for (const cipher_list& c : OK_RSA_ciphers) {
      if (cipher == c.cipher) {
        return true;
      }
    }
  }

  if (key_type == KT_ECDSA) {
    for (const cipher_list& c : OK_ECDSA_ciphers) {
      if (cipher == c.cipher) {
        return true;
      }
    }
  }

  return false;
}

bool OpenSSLStreamAdapter::IsAcceptableCipher(const std::string& cipher,
                                              KeyType key_type) {
  if (key_type == KT_RSA) {
    for (const cipher_list& c : OK_RSA_ciphers) {
      if (cipher == c.cipher_str) {
        return true;
      }
    }
  }

  if (key_type == KT_ECDSA) {
    for (const cipher_list& c : OK_ECDSA_ciphers) {
      if (cipher == c.cipher_str) {
        return true;
      }
    }
  }

  return false;
}

void OpenSSLStreamAdapter::EnableTimeCallbackForTesting() {
#ifdef OPENSSL_IS_BORINGSSL
  g_use_time_callback_for_testing = true;
#endif
}

}  // namespace rtc