aboutsummaryrefslogtreecommitdiff
path: root/rtc_base/rate_limiter_unittest.cc
blob: eda644b4ca9bc7cc112693141663398fc81efae2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/*
 *  Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "rtc_base/rate_limiter.h"

#include <memory>

#include "rtc_base/event.h"
#include "rtc_base/platform_thread.h"
#include "system_wrappers/include/clock.h"
#include "test/gtest.h"

namespace webrtc {

class RateLimitTest : public ::testing::Test {
 public:
  RateLimitTest()
      : clock_(0), rate_limiter(new RateLimiter(&clock_, kWindowSizeMs)) {}
  ~RateLimitTest() override {}

  void SetUp() override { rate_limiter->SetMaxRate(kMaxRateBps); }

 protected:
  static constexpr int64_t kWindowSizeMs = 1000;
  static constexpr uint32_t kMaxRateBps = 100000;
  // Bytes needed to completely saturate the rate limiter.
  static constexpr size_t kRateFillingBytes =
      (kMaxRateBps * kWindowSizeMs) / (8 * 1000);
  SimulatedClock clock_;
  std::unique_ptr<RateLimiter> rate_limiter;
};

TEST_F(RateLimitTest, IncreasingMaxRate) {
  // Fill rate, extend window to full size.
  EXPECT_TRUE(rate_limiter->TryUseRate(kRateFillingBytes / 2));
  clock_.AdvanceTimeMilliseconds(kWindowSizeMs - 1);
  EXPECT_TRUE(rate_limiter->TryUseRate(kRateFillingBytes / 2));

  // All rate consumed.
  EXPECT_FALSE(rate_limiter->TryUseRate(1));

  // Double the available rate and fill that too.
  rate_limiter->SetMaxRate(kMaxRateBps * 2);
  EXPECT_TRUE(rate_limiter->TryUseRate(kRateFillingBytes));

  // All rate consumed again.
  EXPECT_FALSE(rate_limiter->TryUseRate(1));
}

TEST_F(RateLimitTest, DecreasingMaxRate) {
  // Fill rate, extend window to full size.
  EXPECT_TRUE(rate_limiter->TryUseRate(kRateFillingBytes / 2));
  clock_.AdvanceTimeMilliseconds(kWindowSizeMs - 1);
  EXPECT_TRUE(rate_limiter->TryUseRate(kRateFillingBytes / 2));

  // All rate consumed.
  EXPECT_FALSE(rate_limiter->TryUseRate(1));

  // Halve the available rate and move window so half of the data falls out.
  rate_limiter->SetMaxRate(kMaxRateBps / 2);
  clock_.AdvanceTimeMilliseconds(1);

  // All rate still consumed.
  EXPECT_FALSE(rate_limiter->TryUseRate(1));
}

TEST_F(RateLimitTest, ChangingWindowSize) {
  // Fill rate, extend window to full size.
  EXPECT_TRUE(rate_limiter->TryUseRate(kRateFillingBytes / 2));
  clock_.AdvanceTimeMilliseconds(kWindowSizeMs - 1);
  EXPECT_TRUE(rate_limiter->TryUseRate(kRateFillingBytes / 2));

  // All rate consumed.
  EXPECT_FALSE(rate_limiter->TryUseRate(1));

  // Decrease window size so half of the data falls out.
  rate_limiter->SetWindowSize(kWindowSizeMs / 2);
  // Average rate should still be the same, so rate is still all consumed.
  EXPECT_FALSE(rate_limiter->TryUseRate(1));

  // Increase window size again. Now the rate is only half used (removed data
  // points don't come back to life).
  rate_limiter->SetWindowSize(kWindowSizeMs);
  EXPECT_TRUE(rate_limiter->TryUseRate(kRateFillingBytes / 2));

  // All rate consumed again.
  EXPECT_FALSE(rate_limiter->TryUseRate(1));
}

TEST_F(RateLimitTest, SingleUsageAlwaysOk) {
  // Using more bytes than can fit in a window is OK for a single packet.
  EXPECT_TRUE(rate_limiter->TryUseRate(kRateFillingBytes + 1));
}

TEST_F(RateLimitTest, WindowSizeLimits) {
  EXPECT_TRUE(rate_limiter->SetWindowSize(1));
  EXPECT_FALSE(rate_limiter->SetWindowSize(0));
  EXPECT_TRUE(rate_limiter->SetWindowSize(kWindowSizeMs));
  EXPECT_FALSE(rate_limiter->SetWindowSize(kWindowSizeMs + 1));
}

static const int64_t kMaxTimeoutMs = 30000;

class ThreadTask {
 public:
  explicit ThreadTask(RateLimiter* rate_limiter)
      : rate_limiter_(rate_limiter) {}
  virtual ~ThreadTask() {}

  void Run() {
    start_signal_.Wait(kMaxTimeoutMs);
    DoRun();
    end_signal_.Set();
  }

  virtual void DoRun() = 0;

  RateLimiter* const rate_limiter_;
  rtc::Event start_signal_;
  rtc::Event end_signal_;
};

TEST_F(RateLimitTest, MultiThreadedUsage) {
  // Simple sanity test, with different threads calling the various methods.
  // Runs a few simple tasks, each on its own thread, but coordinated with
  // events so that they run in a serialized order. Intended to catch data
  // races when run with tsan et al.

  // Half window size, double rate -> same amount of bytes needed to fill rate.

  class SetWindowSizeTask : public ThreadTask {
   public:
    explicit SetWindowSizeTask(RateLimiter* rate_limiter)
        : ThreadTask(rate_limiter) {}
    ~SetWindowSizeTask() override {}

    void DoRun() override {
      EXPECT_TRUE(rate_limiter_->SetWindowSize(kWindowSizeMs / 2));
    }
  } set_window_size_task(rate_limiter.get());
  auto thread1 = rtc::PlatformThread::SpawnJoinable(
      [&set_window_size_task] { set_window_size_task.Run(); }, "Thread1");

  class SetMaxRateTask : public ThreadTask {
   public:
    explicit SetMaxRateTask(RateLimiter* rate_limiter)
        : ThreadTask(rate_limiter) {}
    ~SetMaxRateTask() override {}

    void DoRun() override { rate_limiter_->SetMaxRate(kMaxRateBps * 2); }
  } set_max_rate_task(rate_limiter.get());
  auto thread2 = rtc::PlatformThread::SpawnJoinable(
      [&set_max_rate_task] { set_max_rate_task.Run(); }, "Thread2");

  class UseRateTask : public ThreadTask {
   public:
    UseRateTask(RateLimiter* rate_limiter, SimulatedClock* clock)
        : ThreadTask(rate_limiter), clock_(clock) {}
    ~UseRateTask() override {}

    void DoRun() override {
      EXPECT_TRUE(rate_limiter_->TryUseRate(kRateFillingBytes / 2));
      clock_->AdvanceTimeMilliseconds((kWindowSizeMs / 2) - 1);
      EXPECT_TRUE(rate_limiter_->TryUseRate(kRateFillingBytes / 2));
    }

    SimulatedClock* const clock_;
  } use_rate_task(rate_limiter.get(), &clock_);
  auto thread3 = rtc::PlatformThread::SpawnJoinable(
      [&use_rate_task] { use_rate_task.Run(); }, "Thread3");

  set_window_size_task.start_signal_.Set();
  EXPECT_TRUE(set_window_size_task.end_signal_.Wait(kMaxTimeoutMs));

  set_max_rate_task.start_signal_.Set();
  EXPECT_TRUE(set_max_rate_task.end_signal_.Wait(kMaxTimeoutMs));

  use_rate_task.start_signal_.Set();
  EXPECT_TRUE(use_rate_task.end_signal_.Wait(kMaxTimeoutMs));

  // All rate consumed.
  EXPECT_FALSE(rate_limiter->TryUseRate(1));
}

}  // namespace webrtc