aboutsummaryrefslogtreecommitdiff
path: root/rtc_base/task_queue_libevent.cc
blob: 909698611e988fbeed8084f5b9a9da78d75dbec6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
/*
 *  Copyright 2016 The WebRTC Project Authors. All rights reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "rtc_base/task_queue_libevent.h"

#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <signal.h>
#include <stdint.h>
#include <time.h>
#include <unistd.h>

#include <list>
#include <memory>
#include <type_traits>
#include <utility>

#include "absl/container/inlined_vector.h"
#include "absl/strings/string_view.h"
#include "api/task_queue/queued_task.h"
#include "api/task_queue/task_queue_base.h"
#include "base/third_party/libevent/event.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/platform_thread.h"
#include "rtc_base/platform_thread_types.h"
#include "rtc_base/synchronization/mutex.h"
#include "rtc_base/thread_annotations.h"
#include "rtc_base/time_utils.h"

namespace webrtc {
namespace {
constexpr char kQuit = 1;
constexpr char kRunTasks = 2;

using Priority = TaskQueueFactory::Priority;

// This ignores the SIGPIPE signal on the calling thread.
// This signal can be fired when trying to write() to a pipe that's being
// closed or while closing a pipe that's being written to.
// We can run into that situation so we ignore this signal and continue as
// normal.
// As a side note for this implementation, it would be great if we could safely
// restore the sigmask, but unfortunately the operation of restoring it, can
// itself actually cause SIGPIPE to be signaled :-| (e.g. on MacOS)
// The SIGPIPE signal by default causes the process to be terminated, so we
// don't want to risk that.
// An alternative to this approach is to ignore the signal for the whole
// process:
//   signal(SIGPIPE, SIG_IGN);
void IgnoreSigPipeSignalOnCurrentThread() {
  sigset_t sigpipe_mask;
  sigemptyset(&sigpipe_mask);
  sigaddset(&sigpipe_mask, SIGPIPE);
  pthread_sigmask(SIG_BLOCK, &sigpipe_mask, nullptr);
}

bool SetNonBlocking(int fd) {
  const int flags = fcntl(fd, F_GETFL);
  RTC_CHECK(flags != -1);
  return (flags & O_NONBLOCK) || fcntl(fd, F_SETFL, flags | O_NONBLOCK) != -1;
}

// TODO(tommi): This is a hack to support two versions of libevent that we're
// compatible with.  The method we really want to call is event_assign(),
// since event_set() has been marked as deprecated (and doesn't accept
// passing event_base__ as a parameter).  However, the version of libevent
// that we have in Chromium, doesn't have event_assign(), so we need to call
// event_set() there.
void EventAssign(struct event* ev,
                 struct event_base* base,
                 int fd,
                 short events,
                 void (*callback)(int, short, void*),
                 void* arg) {
#if defined(_EVENT2_EVENT_H_)
  RTC_CHECK_EQ(0, event_assign(ev, base, fd, events, callback, arg));
#else
  event_set(ev, fd, events, callback, arg);
  RTC_CHECK_EQ(0, event_base_set(base, ev));
#endif
}

rtc::ThreadPriority TaskQueuePriorityToThreadPriority(Priority priority) {
  switch (priority) {
    case Priority::HIGH:
      return rtc::ThreadPriority::kRealtime;
    case Priority::LOW:
      return rtc::ThreadPriority::kLow;
    case Priority::NORMAL:
      return rtc::ThreadPriority::kNormal;
  }
}

class TaskQueueLibevent final : public TaskQueueBase {
 public:
  TaskQueueLibevent(absl::string_view queue_name, rtc::ThreadPriority priority);

  void Delete() override;
  void PostTask(std::unique_ptr<QueuedTask> task) override;
  void PostDelayedTask(std::unique_ptr<QueuedTask> task,
                       uint32_t milliseconds) override;

 private:
  class SetTimerTask;
  struct TimerEvent;

  ~TaskQueueLibevent() override = default;

  static void OnWakeup(int socket, short flags, void* context);  // NOLINT
  static void RunTimer(int fd, short flags, void* context);      // NOLINT

  bool is_active_ = true;
  int wakeup_pipe_in_ = -1;
  int wakeup_pipe_out_ = -1;
  event_base* event_base_;
  event wakeup_event_;
  rtc::PlatformThread thread_;
  Mutex pending_lock_;
  absl::InlinedVector<std::unique_ptr<QueuedTask>, 4> pending_
      RTC_GUARDED_BY(pending_lock_);
  // Holds a list of events pending timers for cleanup when the loop exits.
  std::list<TimerEvent*> pending_timers_;
};

struct TaskQueueLibevent::TimerEvent {
  TimerEvent(TaskQueueLibevent* task_queue, std::unique_ptr<QueuedTask> task)
      : task_queue(task_queue), task(std::move(task)) {}
  ~TimerEvent() { event_del(&ev); }

  event ev;
  TaskQueueLibevent* task_queue;
  std::unique_ptr<QueuedTask> task;
};

class TaskQueueLibevent::SetTimerTask : public QueuedTask {
 public:
  SetTimerTask(std::unique_ptr<QueuedTask> task, uint32_t milliseconds)
      : task_(std::move(task)),
        milliseconds_(milliseconds),
        posted_(rtc::Time32()) {}

 private:
  bool Run() override {
    // Compensate for the time that has passed since construction
    // and until we got here.
    uint32_t post_time = rtc::Time32() - posted_;
    TaskQueueLibevent::Current()->PostDelayedTask(
        std::move(task_),
        post_time > milliseconds_ ? 0 : milliseconds_ - post_time);
    return true;
  }

  std::unique_ptr<QueuedTask> task_;
  const uint32_t milliseconds_;
  const uint32_t posted_;
};

TaskQueueLibevent::TaskQueueLibevent(absl::string_view queue_name,
                                     rtc::ThreadPriority priority)
    : event_base_(event_base_new()) {
  int fds[2];
  RTC_CHECK(pipe(fds) == 0);
  SetNonBlocking(fds[0]);
  SetNonBlocking(fds[1]);
  wakeup_pipe_out_ = fds[0];
  wakeup_pipe_in_ = fds[1];

  EventAssign(&wakeup_event_, event_base_, wakeup_pipe_out_,
              EV_READ | EV_PERSIST, OnWakeup, this);
  event_add(&wakeup_event_, 0);
  thread_ = rtc::PlatformThread::SpawnJoinable(
      [this] {
        {
          CurrentTaskQueueSetter set_current(this);
          while (is_active_)
            event_base_loop(event_base_, 0);
        }

        for (TimerEvent* timer : pending_timers_)
          delete timer;
      },
      queue_name, rtc::ThreadAttributes().SetPriority(priority));
}

void TaskQueueLibevent::Delete() {
  RTC_DCHECK(!IsCurrent());
  struct timespec ts;
  char message = kQuit;
  while (write(wakeup_pipe_in_, &message, sizeof(message)) != sizeof(message)) {
    // The queue is full, so we have no choice but to wait and retry.
    RTC_CHECK_EQ(EAGAIN, errno);
    ts.tv_sec = 0;
    ts.tv_nsec = 1000000;
    nanosleep(&ts, nullptr);
  }

  thread_.Finalize();

  event_del(&wakeup_event_);

  IgnoreSigPipeSignalOnCurrentThread();

  close(wakeup_pipe_in_);
  close(wakeup_pipe_out_);
  wakeup_pipe_in_ = -1;
  wakeup_pipe_out_ = -1;

  event_base_free(event_base_);
  delete this;
}

void TaskQueueLibevent::PostTask(std::unique_ptr<QueuedTask> task) {
  {
    MutexLock lock(&pending_lock_);
    bool had_pending_tasks = !pending_.empty();
    pending_.push_back(std::move(task));

    // Only write to the pipe if there were no pending tasks before this one
    // since the thread could be sleeping. If there were already pending tasks
    // then we know there's either a pending write in the pipe or the thread has
    // not yet processed the pending tasks. In either case, the thread will
    // eventually wake up and process all pending tasks including this one.
    if (had_pending_tasks) {
      return;
    }
  }

  // Note: This behvior outlined above ensures we never fill up the pipe write
  // buffer since there will only ever be 1 byte pending.
  char message = kRunTasks;
  RTC_CHECK_EQ(write(wakeup_pipe_in_, &message, sizeof(message)),
               sizeof(message));
}

void TaskQueueLibevent::PostDelayedTask(std::unique_ptr<QueuedTask> task,
                                        uint32_t milliseconds) {
  if (IsCurrent()) {
    TimerEvent* timer = new TimerEvent(this, std::move(task));
    EventAssign(&timer->ev, event_base_, -1, 0, &TaskQueueLibevent::RunTimer,
                timer);
    pending_timers_.push_back(timer);
    timeval tv = {rtc::dchecked_cast<int>(milliseconds / 1000),
                  rtc::dchecked_cast<int>(milliseconds % 1000) * 1000};
    event_add(&timer->ev, &tv);
  } else {
    PostTask(std::make_unique<SetTimerTask>(std::move(task), milliseconds));
  }
}

// static
void TaskQueueLibevent::OnWakeup(int socket,
                                 short flags,  // NOLINT
                                 void* context) {
  TaskQueueLibevent* me = static_cast<TaskQueueLibevent*>(context);
  RTC_DCHECK(me->wakeup_pipe_out_ == socket);
  char buf;
  RTC_CHECK(sizeof(buf) == read(socket, &buf, sizeof(buf)));
  switch (buf) {
    case kQuit:
      me->is_active_ = false;
      event_base_loopbreak(me->event_base_);
      break;
    case kRunTasks: {
      absl::InlinedVector<std::unique_ptr<QueuedTask>, 4> tasks;
      {
        MutexLock lock(&me->pending_lock_);
        tasks.swap(me->pending_);
      }
      RTC_DCHECK(!tasks.empty());
      for (auto& task : tasks) {
        if (task->Run()) {
          task.reset();
        } else {
          // |false| means the task should *not* be deleted.
          task.release();
        }
      }
      break;
    }
    default:
      RTC_NOTREACHED();
      break;
  }
}

// static
void TaskQueueLibevent::RunTimer(int fd,
                                 short flags,  // NOLINT
                                 void* context) {
  TimerEvent* timer = static_cast<TimerEvent*>(context);
  if (!timer->task->Run())
    timer->task.release();
  timer->task_queue->pending_timers_.remove(timer);
  delete timer;
}

class TaskQueueLibeventFactory final : public TaskQueueFactory {
 public:
  std::unique_ptr<TaskQueueBase, TaskQueueDeleter> CreateTaskQueue(
      absl::string_view name,
      Priority priority) const override {
    return std::unique_ptr<TaskQueueBase, TaskQueueDeleter>(
        new TaskQueueLibevent(name,
                              TaskQueuePriorityToThreadPriority(priority)));
  }
};

}  // namespace

std::unique_ptr<TaskQueueFactory> CreateTaskQueueLibeventFactory() {
  return std::make_unique<TaskQueueLibeventFactory>();
}

}  // namespace webrtc