aboutsummaryrefslogtreecommitdiff
path: root/rtc_base/thread.cc
blob: 8ca9ce76a89cde412d9a6514827a1d7c73a3d3d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
/*
 *  Copyright 2004 The WebRTC Project Authors. All rights reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "rtc_base/thread.h"

#if defined(WEBRTC_WIN)
#include <comdef.h>
#elif defined(WEBRTC_POSIX)
#include <time.h>
#else
#error "Either WEBRTC_WIN or WEBRTC_POSIX needs to be defined."
#endif

#if defined(WEBRTC_WIN)
// Disable warning that we don't care about:
// warning C4722: destructor never returns, potential memory leak
#pragma warning(disable : 4722)
#endif

#include <stdio.h>

#include <utility>

#include "absl/algorithm/container.h"
#include "api/sequence_checker.h"
#include "rtc_base/atomic_ops.h"
#include "rtc_base/checks.h"
#include "rtc_base/deprecated/recursive_critical_section.h"
#include "rtc_base/event.h"
#include "rtc_base/internal/default_socket_server.h"
#include "rtc_base/logging.h"
#include "rtc_base/null_socket_server.h"
#include "rtc_base/task_utils/to_queued_task.h"
#include "rtc_base/time_utils.h"
#include "rtc_base/trace_event.h"

#if defined(WEBRTC_MAC)
#include "rtc_base/system/cocoa_threading.h"

/*
 * These are forward-declarations for methods that are part of the
 * ObjC runtime. They are declared in the private header objc-internal.h.
 * These calls are what clang inserts when using @autoreleasepool in ObjC,
 * but here they are used directly in order to keep this file C++.
 * https://clang.llvm.org/docs/AutomaticReferenceCounting.html#runtime-support
 */
extern "C" {
void* objc_autoreleasePoolPush(void);
void objc_autoreleasePoolPop(void* pool);
}

namespace {
class ScopedAutoReleasePool {
 public:
  ScopedAutoReleasePool() : pool_(objc_autoreleasePoolPush()) {}
  ~ScopedAutoReleasePool() { objc_autoreleasePoolPop(pool_); }

 private:
  void* const pool_;
};
}  // namespace
#endif

namespace rtc {
namespace {

class MessageHandlerWithTask final : public MessageHandler {
 public:
  MessageHandlerWithTask() {}

  void OnMessage(Message* msg) override {
    static_cast<rtc_thread_internal::MessageLikeTask*>(msg->pdata)->Run();
    delete msg->pdata;
  }

 private:
  ~MessageHandlerWithTask() override {}

  RTC_DISALLOW_COPY_AND_ASSIGN(MessageHandlerWithTask);
};

class RTC_SCOPED_LOCKABLE MarkProcessingCritScope {
 public:
  MarkProcessingCritScope(const RecursiveCriticalSection* cs,
                          size_t* processing) RTC_EXCLUSIVE_LOCK_FUNCTION(cs)
      : cs_(cs), processing_(processing) {
    cs_->Enter();
    *processing_ += 1;
  }

  ~MarkProcessingCritScope() RTC_UNLOCK_FUNCTION() {
    *processing_ -= 1;
    cs_->Leave();
  }

 private:
  const RecursiveCriticalSection* const cs_;
  size_t* processing_;

  RTC_DISALLOW_COPY_AND_ASSIGN(MarkProcessingCritScope);
};

}  // namespace

ThreadManager* ThreadManager::Instance() {
  static ThreadManager* const thread_manager = new ThreadManager();
  return thread_manager;
}

ThreadManager::~ThreadManager() {
  // By above RTC_DEFINE_STATIC_LOCAL.
  RTC_NOTREACHED() << "ThreadManager should never be destructed.";
}

// static
void ThreadManager::Add(Thread* message_queue) {
  return Instance()->AddInternal(message_queue);
}
void ThreadManager::AddInternal(Thread* message_queue) {
  CritScope cs(&crit_);
  // Prevent changes while the list of message queues is processed.
  RTC_DCHECK_EQ(processing_, 0);
  message_queues_.push_back(message_queue);
}

// static
void ThreadManager::Remove(Thread* message_queue) {
  return Instance()->RemoveInternal(message_queue);
}
void ThreadManager::RemoveInternal(Thread* message_queue) {
  {
    CritScope cs(&crit_);
    // Prevent changes while the list of message queues is processed.
    RTC_DCHECK_EQ(processing_, 0);
    std::vector<Thread*>::iterator iter;
    iter = absl::c_find(message_queues_, message_queue);
    if (iter != message_queues_.end()) {
      message_queues_.erase(iter);
    }
#if RTC_DCHECK_IS_ON
    RemoveFromSendGraph(message_queue);
#endif
  }
}

#if RTC_DCHECK_IS_ON
void ThreadManager::RemoveFromSendGraph(Thread* thread) {
  for (auto it = send_graph_.begin(); it != send_graph_.end();) {
    if (it->first == thread) {
      it = send_graph_.erase(it);
    } else {
      it->second.erase(thread);
      ++it;
    }
  }
}

void ThreadManager::RegisterSendAndCheckForCycles(Thread* source,
                                                  Thread* target) {
  RTC_DCHECK(source);
  RTC_DCHECK(target);

  CritScope cs(&crit_);
  std::deque<Thread*> all_targets({target});
  // We check the pre-existing who-sends-to-who graph for any path from target
  // to source. This loop is guaranteed to terminate because per the send graph
  // invariant, there are no cycles in the graph.
  for (size_t i = 0; i < all_targets.size(); i++) {
    const auto& targets = send_graph_[all_targets[i]];
    all_targets.insert(all_targets.end(), targets.begin(), targets.end());
  }
  RTC_CHECK_EQ(absl::c_count(all_targets, source), 0)
      << " send loop between " << source->name() << " and " << target->name();

  // We may now insert source -> target without creating a cycle, since there
  // was no path from target to source per the prior CHECK.
  send_graph_[source].insert(target);
}
#endif

// static
void ThreadManager::Clear(MessageHandler* handler) {
  return Instance()->ClearInternal(handler);
}
void ThreadManager::ClearInternal(MessageHandler* handler) {
  // Deleted objects may cause re-entrant calls to ClearInternal. This is
  // allowed as the list of message queues does not change while queues are
  // cleared.
  MarkProcessingCritScope cs(&crit_, &processing_);
  for (Thread* queue : message_queues_) {
    queue->Clear(handler);
  }
}

// static
void ThreadManager::ProcessAllMessageQueuesForTesting() {
  return Instance()->ProcessAllMessageQueuesInternal();
}

void ThreadManager::ProcessAllMessageQueuesInternal() {
  // This works by posting a delayed message at the current time and waiting
  // for it to be dispatched on all queues, which will ensure that all messages
  // that came before it were also dispatched.
  volatile int queues_not_done = 0;

  // This class is used so that whether the posted message is processed, or the
  // message queue is simply cleared, queues_not_done gets decremented.
  class ScopedIncrement : public MessageData {
   public:
    ScopedIncrement(volatile int* value) : value_(value) {
      AtomicOps::Increment(value_);
    }
    ~ScopedIncrement() override { AtomicOps::Decrement(value_); }

   private:
    volatile int* value_;
  };

  {
    MarkProcessingCritScope cs(&crit_, &processing_);
    for (Thread* queue : message_queues_) {
      if (!queue->IsProcessingMessagesForTesting()) {
        // If the queue is not processing messages, it can
        // be ignored. If we tried to post a message to it, it would be dropped
        // or ignored.
        continue;
      }
      queue->PostDelayed(RTC_FROM_HERE, 0, nullptr, MQID_DISPOSE,
                         new ScopedIncrement(&queues_not_done));
    }
  }

  rtc::Thread* current = rtc::Thread::Current();
  // Note: One of the message queues may have been on this thread, which is
  // why we can't synchronously wait for queues_not_done to go to 0; we need
  // to process messages as well.
  while (AtomicOps::AcquireLoad(&queues_not_done) > 0) {
    if (current) {
      current->ProcessMessages(0);
    }
  }
}

// static
Thread* Thread::Current() {
  ThreadManager* manager = ThreadManager::Instance();
  Thread* thread = manager->CurrentThread();

#ifndef NO_MAIN_THREAD_WRAPPING
  // Only autowrap the thread which instantiated the ThreadManager.
  if (!thread && manager->IsMainThread()) {
    thread = new Thread(CreateDefaultSocketServer());
    thread->WrapCurrentWithThreadManager(manager, true);
  }
#endif

  return thread;
}

#if defined(WEBRTC_POSIX)
ThreadManager::ThreadManager() : main_thread_ref_(CurrentThreadRef()) {
#if defined(WEBRTC_MAC)
  InitCocoaMultiThreading();
#endif
  pthread_key_create(&key_, nullptr);
}

Thread* ThreadManager::CurrentThread() {
  return static_cast<Thread*>(pthread_getspecific(key_));
}

void ThreadManager::SetCurrentThreadInternal(Thread* thread) {
  pthread_setspecific(key_, thread);
}
#endif

#if defined(WEBRTC_WIN)
ThreadManager::ThreadManager()
    : key_(TlsAlloc()), main_thread_ref_(CurrentThreadRef()) {}

Thread* ThreadManager::CurrentThread() {
  return static_cast<Thread*>(TlsGetValue(key_));
}

void ThreadManager::SetCurrentThreadInternal(Thread* thread) {
  TlsSetValue(key_, thread);
}
#endif

void ThreadManager::SetCurrentThread(Thread* thread) {
#if RTC_DLOG_IS_ON
  if (CurrentThread() && thread) {
    RTC_DLOG(LS_ERROR) << "SetCurrentThread: Overwriting an existing value?";
  }
#endif  // RTC_DLOG_IS_ON

  if (thread) {
    thread->EnsureIsCurrentTaskQueue();
  } else {
    Thread* current = CurrentThread();
    if (current) {
      // The current thread is being cleared, e.g. as a result of
      // UnwrapCurrent() being called or when a thread is being stopped
      // (see PreRun()). This signals that the Thread instance is being detached
      // from the thread, which also means that TaskQueue::Current() must not
      // return a pointer to the Thread instance.
      current->ClearCurrentTaskQueue();
    }
  }

  SetCurrentThreadInternal(thread);
}

void rtc::ThreadManager::ChangeCurrentThreadForTest(rtc::Thread* thread) {
  SetCurrentThreadInternal(thread);
}

Thread* ThreadManager::WrapCurrentThread() {
  Thread* result = CurrentThread();
  if (nullptr == result) {
    result = new Thread(CreateDefaultSocketServer());
    result->WrapCurrentWithThreadManager(this, true);
  }
  return result;
}

void ThreadManager::UnwrapCurrentThread() {
  Thread* t = CurrentThread();
  if (t && !(t->IsOwned())) {
    t->UnwrapCurrent();
    delete t;
  }
}

bool ThreadManager::IsMainThread() {
  return IsThreadRefEqual(CurrentThreadRef(), main_thread_ref_);
}

Thread::ScopedDisallowBlockingCalls::ScopedDisallowBlockingCalls()
    : thread_(Thread::Current()),
      previous_state_(thread_->SetAllowBlockingCalls(false)) {}

Thread::ScopedDisallowBlockingCalls::~ScopedDisallowBlockingCalls() {
  RTC_DCHECK(thread_->IsCurrent());
  thread_->SetAllowBlockingCalls(previous_state_);
}

#if RTC_DCHECK_IS_ON
Thread::ScopedCountBlockingCalls::ScopedCountBlockingCalls(
    std::function<void(uint32_t, uint32_t)> callback)
    : thread_(Thread::Current()),
      base_blocking_call_count_(thread_->GetBlockingCallCount()),
      base_could_be_blocking_call_count_(
          thread_->GetCouldBeBlockingCallCount()),
      result_callback_(std::move(callback)) {}

Thread::ScopedCountBlockingCalls::~ScopedCountBlockingCalls() {
  if (GetTotalBlockedCallCount() >= min_blocking_calls_for_callback_) {
    result_callback_(GetBlockingCallCount(), GetCouldBeBlockingCallCount());
  }
}

uint32_t Thread::ScopedCountBlockingCalls::GetBlockingCallCount() const {
  return thread_->GetBlockingCallCount() - base_blocking_call_count_;
}

uint32_t Thread::ScopedCountBlockingCalls::GetCouldBeBlockingCallCount() const {
  return thread_->GetCouldBeBlockingCallCount() -
         base_could_be_blocking_call_count_;
}

uint32_t Thread::ScopedCountBlockingCalls::GetTotalBlockedCallCount() const {
  return GetBlockingCallCount() + GetCouldBeBlockingCallCount();
}
#endif

Thread::Thread(SocketServer* ss) : Thread(ss, /*do_init=*/true) {}

Thread::Thread(std::unique_ptr<SocketServer> ss)
    : Thread(std::move(ss), /*do_init=*/true) {}

Thread::Thread(SocketServer* ss, bool do_init)
    : fPeekKeep_(false),
      delayed_next_num_(0),
      fInitialized_(false),
      fDestroyed_(false),
      stop_(0),
      ss_(ss) {
  RTC_DCHECK(ss);
  ss_->SetMessageQueue(this);
  SetName("Thread", this);  // default name
  if (do_init) {
    DoInit();
  }
}

Thread::Thread(std::unique_ptr<SocketServer> ss, bool do_init)
    : Thread(ss.get(), do_init) {
  own_ss_ = std::move(ss);
}

Thread::~Thread() {
  Stop();
  DoDestroy();
}

void Thread::DoInit() {
  if (fInitialized_) {
    return;
  }

  fInitialized_ = true;
  ThreadManager::Add(this);
}

void Thread::DoDestroy() {
  if (fDestroyed_) {
    return;
  }

  fDestroyed_ = true;
  // The signal is done from here to ensure
  // that it always gets called when the queue
  // is going away.
  if (ss_) {
    ss_->SetMessageQueue(nullptr);
  }
  ThreadManager::Remove(this);
  ClearInternal(nullptr, MQID_ANY, nullptr);
}

SocketServer* Thread::socketserver() {
  return ss_;
}

void Thread::WakeUpSocketServer() {
  ss_->WakeUp();
}

void Thread::Quit() {
  AtomicOps::ReleaseStore(&stop_, 1);
  WakeUpSocketServer();
}

bool Thread::IsQuitting() {
  return AtomicOps::AcquireLoad(&stop_) != 0;
}

void Thread::Restart() {
  AtomicOps::ReleaseStore(&stop_, 0);
}

bool Thread::Peek(Message* pmsg, int cmsWait) {
  if (fPeekKeep_) {
    *pmsg = msgPeek_;
    return true;
  }
  if (!Get(pmsg, cmsWait))
    return false;
  msgPeek_ = *pmsg;
  fPeekKeep_ = true;
  return true;
}

bool Thread::Get(Message* pmsg, int cmsWait, bool process_io) {
  // Return and clear peek if present
  // Always return the peek if it exists so there is Peek/Get symmetry

  if (fPeekKeep_) {
    *pmsg = msgPeek_;
    fPeekKeep_ = false;
    return true;
  }

  // Get w/wait + timer scan / dispatch + socket / event multiplexer dispatch

  int64_t cmsTotal = cmsWait;
  int64_t cmsElapsed = 0;
  int64_t msStart = TimeMillis();
  int64_t msCurrent = msStart;
  while (true) {
    // Check for posted events
    int64_t cmsDelayNext = kForever;
    bool first_pass = true;
    while (true) {
      // All queue operations need to be locked, but nothing else in this loop
      // (specifically handling disposed message) can happen inside the crit.
      // Otherwise, disposed MessageHandlers will cause deadlocks.
      {
        CritScope cs(&crit_);
        // On the first pass, check for delayed messages that have been
        // triggered and calculate the next trigger time.
        if (first_pass) {
          first_pass = false;
          while (!delayed_messages_.empty()) {
            if (msCurrent < delayed_messages_.top().run_time_ms_) {
              cmsDelayNext =
                  TimeDiff(delayed_messages_.top().run_time_ms_, msCurrent);
              break;
            }
            messages_.push_back(delayed_messages_.top().msg_);
            delayed_messages_.pop();
          }
        }
        // Pull a message off the message queue, if available.
        if (messages_.empty()) {
          break;
        } else {
          *pmsg = messages_.front();
          messages_.pop_front();
        }
      }  // crit_ is released here.

      // If this was a dispose message, delete it and skip it.
      if (MQID_DISPOSE == pmsg->message_id) {
        RTC_DCHECK(nullptr == pmsg->phandler);
        delete pmsg->pdata;
        *pmsg = Message();
        continue;
      }
      return true;
    }

    if (IsQuitting())
      break;

    // Which is shorter, the delay wait or the asked wait?

    int64_t cmsNext;
    if (cmsWait == kForever) {
      cmsNext = cmsDelayNext;
    } else {
      cmsNext = std::max<int64_t>(0, cmsTotal - cmsElapsed);
      if ((cmsDelayNext != kForever) && (cmsDelayNext < cmsNext))
        cmsNext = cmsDelayNext;
    }

    {
      // Wait and multiplex in the meantime
      if (!ss_->Wait(static_cast<int>(cmsNext), process_io))
        return false;
    }

    // If the specified timeout expired, return

    msCurrent = TimeMillis();
    cmsElapsed = TimeDiff(msCurrent, msStart);
    if (cmsWait != kForever) {
      if (cmsElapsed >= cmsWait)
        return false;
    }
  }
  return false;
}

void Thread::Post(const Location& posted_from,
                  MessageHandler* phandler,
                  uint32_t id,
                  MessageData* pdata,
                  bool time_sensitive) {
  RTC_DCHECK(!time_sensitive);
  if (IsQuitting()) {
    delete pdata;
    return;
  }

  // Keep thread safe
  // Add the message to the end of the queue
  // Signal for the multiplexer to return

  {
    CritScope cs(&crit_);
    Message msg;
    msg.posted_from = posted_from;
    msg.phandler = phandler;
    msg.message_id = id;
    msg.pdata = pdata;
    messages_.push_back(msg);
  }
  WakeUpSocketServer();
}

void Thread::PostDelayed(const Location& posted_from,
                         int delay_ms,
                         MessageHandler* phandler,
                         uint32_t id,
                         MessageData* pdata) {
  return DoDelayPost(posted_from, delay_ms, TimeAfter(delay_ms), phandler, id,
                     pdata);
}

void Thread::PostAt(const Location& posted_from,
                    int64_t run_at_ms,
                    MessageHandler* phandler,
                    uint32_t id,
                    MessageData* pdata) {
  return DoDelayPost(posted_from, TimeUntil(run_at_ms), run_at_ms, phandler, id,
                     pdata);
}

void Thread::DoDelayPost(const Location& posted_from,
                         int64_t delay_ms,
                         int64_t run_at_ms,
                         MessageHandler* phandler,
                         uint32_t id,
                         MessageData* pdata) {
  if (IsQuitting()) {
    delete pdata;
    return;
  }

  // Keep thread safe
  // Add to the priority queue. Gets sorted soonest first.
  // Signal for the multiplexer to return.

  {
    CritScope cs(&crit_);
    Message msg;
    msg.posted_from = posted_from;
    msg.phandler = phandler;
    msg.message_id = id;
    msg.pdata = pdata;
    DelayedMessage delayed(delay_ms, run_at_ms, delayed_next_num_, msg);
    delayed_messages_.push(delayed);
    // If this message queue processes 1 message every millisecond for 50 days,
    // we will wrap this number.  Even then, only messages with identical times
    // will be misordered, and then only briefly.  This is probably ok.
    ++delayed_next_num_;
    RTC_DCHECK_NE(0, delayed_next_num_);
  }
  WakeUpSocketServer();
}

int Thread::GetDelay() {
  CritScope cs(&crit_);

  if (!messages_.empty())
    return 0;

  if (!delayed_messages_.empty()) {
    int delay = TimeUntil(delayed_messages_.top().run_time_ms_);
    if (delay < 0)
      delay = 0;
    return delay;
  }

  return kForever;
}

void Thread::ClearInternal(MessageHandler* phandler,
                           uint32_t id,
                           MessageList* removed) {
  // Remove messages with phandler

  if (fPeekKeep_ && msgPeek_.Match(phandler, id)) {
    if (removed) {
      removed->push_back(msgPeek_);
    } else {
      delete msgPeek_.pdata;
    }
    fPeekKeep_ = false;
  }

  // Remove from ordered message queue

  for (auto it = messages_.begin(); it != messages_.end();) {
    if (it->Match(phandler, id)) {
      if (removed) {
        removed->push_back(*it);
      } else {
        delete it->pdata;
      }
      it = messages_.erase(it);
    } else {
      ++it;
    }
  }

  // Remove from priority queue. Not directly iterable, so use this approach

  auto new_end = delayed_messages_.container().begin();
  for (auto it = new_end; it != delayed_messages_.container().end(); ++it) {
    if (it->msg_.Match(phandler, id)) {
      if (removed) {
        removed->push_back(it->msg_);
      } else {
        delete it->msg_.pdata;
      }
    } else {
      *new_end++ = *it;
    }
  }
  delayed_messages_.container().erase(new_end,
                                      delayed_messages_.container().end());
  delayed_messages_.reheap();
}

void Thread::Dispatch(Message* pmsg) {
  TRACE_EVENT2("webrtc", "Thread::Dispatch", "src_file",
               pmsg->posted_from.file_name(), "src_func",
               pmsg->posted_from.function_name());
  RTC_DCHECK_RUN_ON(this);
  int64_t start_time = TimeMillis();
  pmsg->phandler->OnMessage(pmsg);
  int64_t end_time = TimeMillis();
  int64_t diff = TimeDiff(end_time, start_time);
  if (diff >= dispatch_warning_ms_) {
    RTC_LOG(LS_INFO) << "Message to " << name() << " took " << diff
                     << "ms to dispatch. Posted from: "
                     << pmsg->posted_from.ToString();
    // To avoid log spew, move the warning limit to only give warning
    // for delays that are larger than the one observed.
    dispatch_warning_ms_ = diff + 1;
  }
}

bool Thread::IsCurrent() const {
  return ThreadManager::Instance()->CurrentThread() == this;
}

std::unique_ptr<Thread> Thread::CreateWithSocketServer() {
  return std::unique_ptr<Thread>(new Thread(CreateDefaultSocketServer()));
}

std::unique_ptr<Thread> Thread::Create() {
  return std::unique_ptr<Thread>(
      new Thread(std::unique_ptr<SocketServer>(new NullSocketServer())));
}

bool Thread::SleepMs(int milliseconds) {
  AssertBlockingIsAllowedOnCurrentThread();

#if defined(WEBRTC_WIN)
  ::Sleep(milliseconds);
  return true;
#else
  // POSIX has both a usleep() and a nanosleep(), but the former is deprecated,
  // so we use nanosleep() even though it has greater precision than necessary.
  struct timespec ts;
  ts.tv_sec = milliseconds / 1000;
  ts.tv_nsec = (milliseconds % 1000) * 1000000;
  int ret = nanosleep(&ts, nullptr);
  if (ret != 0) {
    RTC_LOG_ERR(LS_WARNING) << "nanosleep() returning early";
    return false;
  }
  return true;
#endif
}

bool Thread::SetName(const std::string& name, const void* obj) {
  RTC_DCHECK(!IsRunning());

  name_ = name;
  if (obj) {
    // The %p specifier typically produce at most 16 hex digits, possibly with a
    // 0x prefix. But format is implementation defined, so add some margin.
    char buf[30];
    snprintf(buf, sizeof(buf), " 0x%p", obj);
    name_ += buf;
  }
  return true;
}

void Thread::SetDispatchWarningMs(int deadline) {
  if (!IsCurrent()) {
    PostTask(webrtc::ToQueuedTask(
        [this, deadline]() { SetDispatchWarningMs(deadline); }));
    return;
  }
  RTC_DCHECK_RUN_ON(this);
  dispatch_warning_ms_ = deadline;
}

bool Thread::Start() {
  RTC_DCHECK(!IsRunning());

  if (IsRunning())
    return false;

  Restart();  // reset IsQuitting() if the thread is being restarted

  // Make sure that ThreadManager is created on the main thread before
  // we start a new thread.
  ThreadManager::Instance();

  owned_ = true;

#if defined(WEBRTC_WIN)
  thread_ = CreateThread(nullptr, 0, PreRun, this, 0, &thread_id_);
  if (!thread_) {
    return false;
  }
#elif defined(WEBRTC_POSIX)
  pthread_attr_t attr;
  pthread_attr_init(&attr);

  int error_code = pthread_create(&thread_, &attr, PreRun, this);
  if (0 != error_code) {
    RTC_LOG(LS_ERROR) << "Unable to create pthread, error " << error_code;
    thread_ = 0;
    return false;
  }
  RTC_DCHECK(thread_);
#endif
  return true;
}

bool Thread::WrapCurrent() {
  return WrapCurrentWithThreadManager(ThreadManager::Instance(), true);
}

void Thread::UnwrapCurrent() {
  // Clears the platform-specific thread-specific storage.
  ThreadManager::Instance()->SetCurrentThread(nullptr);
#if defined(WEBRTC_WIN)
  if (thread_ != nullptr) {
    if (!CloseHandle(thread_)) {
      RTC_LOG_GLE(LS_ERROR)
          << "When unwrapping thread, failed to close handle.";
    }
    thread_ = nullptr;
    thread_id_ = 0;
  }
#elif defined(WEBRTC_POSIX)
  thread_ = 0;
#endif
}

void Thread::SafeWrapCurrent() {
  WrapCurrentWithThreadManager(ThreadManager::Instance(), false);
}

void Thread::Join() {
  if (!IsRunning())
    return;

  RTC_DCHECK(!IsCurrent());
  if (Current() && !Current()->blocking_calls_allowed_) {
    RTC_LOG(LS_WARNING) << "Waiting for the thread to join, "
                           "but blocking calls have been disallowed";
  }

#if defined(WEBRTC_WIN)
  RTC_DCHECK(thread_ != nullptr);
  WaitForSingleObject(thread_, INFINITE);
  CloseHandle(thread_);
  thread_ = nullptr;
  thread_id_ = 0;
#elif defined(WEBRTC_POSIX)
  pthread_join(thread_, nullptr);
  thread_ = 0;
#endif
}

bool Thread::SetAllowBlockingCalls(bool allow) {
  RTC_DCHECK(IsCurrent());
  bool previous = blocking_calls_allowed_;
  blocking_calls_allowed_ = allow;
  return previous;
}

// static
void Thread::AssertBlockingIsAllowedOnCurrentThread() {
#if !defined(NDEBUG)
  Thread* current = Thread::Current();
  RTC_DCHECK(!current || current->blocking_calls_allowed_);
#endif
}

// static
#if defined(WEBRTC_WIN)
DWORD WINAPI Thread::PreRun(LPVOID pv) {
#else
void* Thread::PreRun(void* pv) {
#endif
  Thread* thread = static_cast<Thread*>(pv);
  ThreadManager::Instance()->SetCurrentThread(thread);
  rtc::SetCurrentThreadName(thread->name_.c_str());
#if defined(WEBRTC_MAC)
  ScopedAutoReleasePool pool;
#endif
  thread->Run();

  ThreadManager::Instance()->SetCurrentThread(nullptr);
#ifdef WEBRTC_WIN
  return 0;
#else
  return nullptr;
#endif
}  // namespace rtc

void Thread::Run() {
  ProcessMessages(kForever);
}

bool Thread::IsOwned() {
  RTC_DCHECK(IsRunning());
  return owned_;
}

void Thread::Stop() {
  Thread::Quit();
  Join();
}

void Thread::Send(const Location& posted_from,
                  MessageHandler* phandler,
                  uint32_t id,
                  MessageData* pdata) {
  RTC_DCHECK(!IsQuitting());
  if (IsQuitting())
    return;

  // Sent messages are sent to the MessageHandler directly, in the context
  // of "thread", like Win32 SendMessage. If in the right context,
  // call the handler directly.
  Message msg;
  msg.posted_from = posted_from;
  msg.phandler = phandler;
  msg.message_id = id;
  msg.pdata = pdata;
  if (IsCurrent()) {
#if RTC_DCHECK_IS_ON
    RTC_DCHECK(this->IsInvokeToThreadAllowed(this));
    RTC_DCHECK_RUN_ON(this);
    could_be_blocking_call_count_++;
#endif
    msg.phandler->OnMessage(&msg);
    return;
  }

  AssertBlockingIsAllowedOnCurrentThread();

  Thread* current_thread = Thread::Current();

#if RTC_DCHECK_IS_ON
  if (current_thread) {
    RTC_DCHECK_RUN_ON(current_thread);
    current_thread->blocking_call_count_++;
    RTC_DCHECK(current_thread->IsInvokeToThreadAllowed(this));
    ThreadManager::Instance()->RegisterSendAndCheckForCycles(current_thread,
                                                             this);
  }
#endif

  // Perhaps down the line we can get rid of this workaround and always require
  // current_thread to be valid when Send() is called.
  std::unique_ptr<rtc::Event> done_event;
  if (!current_thread)
    done_event.reset(new rtc::Event());

  bool ready = false;
  PostTask(webrtc::ToQueuedTask(
      [&msg]() mutable { msg.phandler->OnMessage(&msg); },
      [this, &ready, current_thread, done = done_event.get()] {
        if (current_thread) {
          CritScope cs(&crit_);
          ready = true;
          current_thread->socketserver()->WakeUp();
        } else {
          done->Set();
        }
      }));

  if (current_thread) {
    bool waited = false;
    crit_.Enter();
    while (!ready) {
      crit_.Leave();
      current_thread->socketserver()->Wait(kForever, false);
      waited = true;
      crit_.Enter();
    }
    crit_.Leave();

    // Our Wait loop above may have consumed some WakeUp events for this
    // Thread, that weren't relevant to this Send.  Losing these WakeUps can
    // cause problems for some SocketServers.
    //
    // Concrete example:
    // Win32SocketServer on thread A calls Send on thread B.  While processing
    // the message, thread B Posts a message to A.  We consume the wakeup for
    // that Post while waiting for the Send to complete, which means that when
    // we exit this loop, we need to issue another WakeUp, or else the Posted
    // message won't be processed in a timely manner.

    if (waited) {
      current_thread->socketserver()->WakeUp();
    }
  } else {
    done_event->Wait(rtc::Event::kForever);
  }
}

void Thread::InvokeInternal(const Location& posted_from,
                            rtc::FunctionView<void()> functor) {
  TRACE_EVENT2("webrtc", "Thread::Invoke", "src_file", posted_from.file_name(),
               "src_func", posted_from.function_name());

  class FunctorMessageHandler : public MessageHandler {
   public:
    explicit FunctorMessageHandler(rtc::FunctionView<void()> functor)
        : functor_(functor) {}
    void OnMessage(Message* msg) override { functor_(); }

   private:
    rtc::FunctionView<void()> functor_;
  } handler(functor);

  Send(posted_from, &handler);
}

// Called by the ThreadManager when being set as the current thread.
void Thread::EnsureIsCurrentTaskQueue() {
  task_queue_registration_ =
      std::make_unique<TaskQueueBase::CurrentTaskQueueSetter>(this);
}

// Called by the ThreadManager when being set as the current thread.
void Thread::ClearCurrentTaskQueue() {
  task_queue_registration_.reset();
}

void Thread::QueuedTaskHandler::OnMessage(Message* msg) {
  RTC_DCHECK(msg);
  auto* data = static_cast<ScopedMessageData<webrtc::QueuedTask>*>(msg->pdata);
  std::unique_ptr<webrtc::QueuedTask> task = std::move(data->data());
  // Thread expects handler to own Message::pdata when OnMessage is called
  // Since MessageData is no longer needed, delete it.
  delete data;

  // QueuedTask interface uses Run return value to communicate who owns the
  // task. false means QueuedTask took the ownership.
  if (!task->Run())
    task.release();
}

void Thread::AllowInvokesToThread(Thread* thread) {
#if (!defined(NDEBUG) || defined(DCHECK_ALWAYS_ON))
  if (!IsCurrent()) {
    PostTask(webrtc::ToQueuedTask(
        [thread, this]() { AllowInvokesToThread(thread); }));
    return;
  }
  RTC_DCHECK_RUN_ON(this);
  allowed_threads_.push_back(thread);
  invoke_policy_enabled_ = true;
#endif
}

void Thread::DisallowAllInvokes() {
#if (!defined(NDEBUG) || defined(DCHECK_ALWAYS_ON))
  if (!IsCurrent()) {
    PostTask(webrtc::ToQueuedTask([this]() { DisallowAllInvokes(); }));
    return;
  }
  RTC_DCHECK_RUN_ON(this);
  allowed_threads_.clear();
  invoke_policy_enabled_ = true;
#endif
}

#if RTC_DCHECK_IS_ON
uint32_t Thread::GetBlockingCallCount() const {
  RTC_DCHECK_RUN_ON(this);
  return blocking_call_count_;
}
uint32_t Thread::GetCouldBeBlockingCallCount() const {
  RTC_DCHECK_RUN_ON(this);
  return could_be_blocking_call_count_;
}
#endif

// Returns true if no policies added or if there is at least one policy
// that permits invocation to |target| thread.
bool Thread::IsInvokeToThreadAllowed(rtc::Thread* target) {
#if (!defined(NDEBUG) || defined(DCHECK_ALWAYS_ON))
  RTC_DCHECK_RUN_ON(this);
  if (!invoke_policy_enabled_) {
    return true;
  }
  for (const auto* thread : allowed_threads_) {
    if (thread == target) {
      return true;
    }
  }
  return false;
#else
  return true;
#endif
}

void Thread::PostTask(std::unique_ptr<webrtc::QueuedTask> task) {
  // Though Post takes MessageData by raw pointer (last parameter), it still
  // takes it with ownership.
  Post(RTC_FROM_HERE, &queued_task_handler_,
       /*id=*/0, new ScopedMessageData<webrtc::QueuedTask>(std::move(task)));
}

void Thread::PostDelayedTask(std::unique_ptr<webrtc::QueuedTask> task,
                             uint32_t milliseconds) {
  // Though PostDelayed takes MessageData by raw pointer (last parameter),
  // it still takes it with ownership.
  PostDelayed(RTC_FROM_HERE, milliseconds, &queued_task_handler_,
              /*id=*/0,
              new ScopedMessageData<webrtc::QueuedTask>(std::move(task)));
}

void Thread::Delete() {
  Stop();
  delete this;
}

bool Thread::IsProcessingMessagesForTesting() {
  return (owned_ || IsCurrent()) && !IsQuitting();
}

void Thread::Clear(MessageHandler* phandler,
                   uint32_t id,
                   MessageList* removed) {
  CritScope cs(&crit_);
  ClearInternal(phandler, id, removed);
}

bool Thread::ProcessMessages(int cmsLoop) {
  // Using ProcessMessages with a custom clock for testing and a time greater
  // than 0 doesn't work, since it's not guaranteed to advance the custom
  // clock's time, and may get stuck in an infinite loop.
  RTC_DCHECK(GetClockForTesting() == nullptr || cmsLoop == 0 ||
             cmsLoop == kForever);
  int64_t msEnd = (kForever == cmsLoop) ? 0 : TimeAfter(cmsLoop);
  int cmsNext = cmsLoop;

  while (true) {
#if defined(WEBRTC_MAC)
    ScopedAutoReleasePool pool;
#endif
    Message msg;
    if (!Get(&msg, cmsNext))
      return !IsQuitting();
    Dispatch(&msg);

    if (cmsLoop != kForever) {
      cmsNext = static_cast<int>(TimeUntil(msEnd));
      if (cmsNext < 0)
        return true;
    }
  }
}

bool Thread::WrapCurrentWithThreadManager(ThreadManager* thread_manager,
                                          bool need_synchronize_access) {
  RTC_DCHECK(!IsRunning());

#if defined(WEBRTC_WIN)
  if (need_synchronize_access) {
    // We explicitly ask for no rights other than synchronization.
    // This gives us the best chance of succeeding.
    thread_ = OpenThread(SYNCHRONIZE, FALSE, GetCurrentThreadId());
    if (!thread_) {
      RTC_LOG_GLE(LS_ERROR) << "Unable to get handle to thread.";
      return false;
    }
    thread_id_ = GetCurrentThreadId();
  }
#elif defined(WEBRTC_POSIX)
  thread_ = pthread_self();
#endif
  owned_ = false;
  thread_manager->SetCurrentThread(this);
  return true;
}

bool Thread::IsRunning() {
#if defined(WEBRTC_WIN)
  return thread_ != nullptr;
#elif defined(WEBRTC_POSIX)
  return thread_ != 0;
#endif
}

// static
MessageHandler* Thread::GetPostTaskMessageHandler() {
  // Allocate at first call, never deallocate.
  static MessageHandler* handler = new MessageHandlerWithTask;
  return handler;
}

AutoThread::AutoThread()
    : Thread(CreateDefaultSocketServer(), /*do_init=*/false) {
  if (!ThreadManager::Instance()->CurrentThread()) {
    // DoInit registers with ThreadManager. Do that only if we intend to
    // be rtc::Thread::Current(), otherwise ProcessAllMessageQueuesInternal will
    // post a message to a queue that no running thread is serving.
    DoInit();
    ThreadManager::Instance()->SetCurrentThread(this);
  }
}

AutoThread::~AutoThread() {
  Stop();
  DoDestroy();
  if (ThreadManager::Instance()->CurrentThread() == this) {
    ThreadManager::Instance()->SetCurrentThread(nullptr);
  }
}

AutoSocketServerThread::AutoSocketServerThread(SocketServer* ss)
    : Thread(ss, /*do_init=*/false) {
  DoInit();
  old_thread_ = ThreadManager::Instance()->CurrentThread();
  // Temporarily set the current thread to nullptr so that we can keep checks
  // around that catch unintentional pointer overwrites.
  rtc::ThreadManager::Instance()->SetCurrentThread(nullptr);
  rtc::ThreadManager::Instance()->SetCurrentThread(this);
  if (old_thread_) {
    ThreadManager::Remove(old_thread_);
  }
}

AutoSocketServerThread::~AutoSocketServerThread() {
  RTC_DCHECK(ThreadManager::Instance()->CurrentThread() == this);
  // Some tests post destroy messages to this thread. To avoid memory
  // leaks, we have to process those messages. In particular
  // P2PTransportChannelPingTest, relying on the message posted in
  // cricket::Connection::Destroy.
  ProcessMessages(0);
  // Stop and destroy the thread before clearing it as the current thread.
  // Sometimes there are messages left in the Thread that will be
  // destroyed by DoDestroy, and sometimes the destructors of the message and/or
  // its contents rely on this thread still being set as the current thread.
  Stop();
  DoDestroy();
  rtc::ThreadManager::Instance()->SetCurrentThread(nullptr);
  rtc::ThreadManager::Instance()->SetCurrentThread(old_thread_);
  if (old_thread_) {
    ThreadManager::Add(old_thread_);
  }
}

}  // namespace rtc