aboutsummaryrefslogtreecommitdiff
path: root/rtc_base/thread_unittest.cc
blob: 789bdd943e1dba1ca52c12f25737201221c72d60 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
/*
 *  Copyright 2004 The WebRTC Project Authors. All rights reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "rtc_base/thread.h"

#include <memory>

#include "api/task_queue/task_queue_factory.h"
#include "api/task_queue/task_queue_test.h"
#include "rtc_base/async_invoker.h"
#include "rtc_base/async_udp_socket.h"
#include "rtc_base/atomic_ops.h"
#include "rtc_base/event.h"
#include "rtc_base/gunit.h"
#include "rtc_base/internal/default_socket_server.h"
#include "rtc_base/null_socket_server.h"
#include "rtc_base/physical_socket_server.h"
#include "rtc_base/socket_address.h"
#include "rtc_base/synchronization/mutex.h"
#include "rtc_base/task_utils/to_queued_task.h"
#include "rtc_base/third_party/sigslot/sigslot.h"
#include "test/testsupport/rtc_expect_death.h"

#if defined(WEBRTC_WIN)
#include <comdef.h>  // NOLINT

#endif

namespace rtc {
namespace {

using ::webrtc::ToQueuedTask;

// Generates a sequence of numbers (collaboratively).
class TestGenerator {
 public:
  TestGenerator() : last(0), count(0) {}

  int Next(int prev) {
    int result = prev + last;
    last = result;
    count += 1;
    return result;
  }

  int last;
  int count;
};

struct TestMessage : public MessageData {
  explicit TestMessage(int v) : value(v) {}

  int value;
};

// Receives on a socket and sends by posting messages.
class SocketClient : public TestGenerator, public sigslot::has_slots<> {
 public:
  SocketClient(AsyncSocket* socket,
               const SocketAddress& addr,
               Thread* post_thread,
               MessageHandler* phandler)
      : socket_(AsyncUDPSocket::Create(socket, addr)),
        post_thread_(post_thread),
        post_handler_(phandler) {
    socket_->SignalReadPacket.connect(this, &SocketClient::OnPacket);
  }

  ~SocketClient() override { delete socket_; }

  SocketAddress address() const { return socket_->GetLocalAddress(); }

  void OnPacket(AsyncPacketSocket* socket,
                const char* buf,
                size_t size,
                const SocketAddress& remote_addr,
                const int64_t& packet_time_us) {
    EXPECT_EQ(size, sizeof(uint32_t));
    uint32_t prev = reinterpret_cast<const uint32_t*>(buf)[0];
    uint32_t result = Next(prev);

    post_thread_->PostDelayed(RTC_FROM_HERE, 200, post_handler_, 0,
                              new TestMessage(result));
  }

 private:
  AsyncUDPSocket* socket_;
  Thread* post_thread_;
  MessageHandler* post_handler_;
};

// Receives messages and sends on a socket.
class MessageClient : public MessageHandlerAutoCleanup, public TestGenerator {
 public:
  MessageClient(Thread* pth, Socket* socket) : socket_(socket) {}

  ~MessageClient() override { delete socket_; }

  void OnMessage(Message* pmsg) override {
    TestMessage* msg = static_cast<TestMessage*>(pmsg->pdata);
    int result = Next(msg->value);
    EXPECT_GE(socket_->Send(&result, sizeof(result)), 0);
    delete msg;
  }

 private:
  Socket* socket_;
};

class CustomThread : public rtc::Thread {
 public:
  CustomThread()
      : Thread(std::unique_ptr<SocketServer>(new rtc::NullSocketServer())) {}
  ~CustomThread() override { Stop(); }
  bool Start() { return false; }

  bool WrapCurrent() { return Thread::WrapCurrent(); }
  void UnwrapCurrent() { Thread::UnwrapCurrent(); }
};

// A thread that does nothing when it runs and signals an event
// when it is destroyed.
class SignalWhenDestroyedThread : public Thread {
 public:
  SignalWhenDestroyedThread(Event* event)
      : Thread(std::unique_ptr<SocketServer>(new NullSocketServer())),
        event_(event) {}

  ~SignalWhenDestroyedThread() override {
    Stop();
    event_->Set();
  }

  void Run() override {
    // Do nothing.
  }

 private:
  Event* event_;
};

// A bool wrapped in a mutex, to avoid data races. Using a volatile
// bool should be sufficient for correct code ("eventual consistency"
// between caches is sufficient), but we can't tell the compiler about
// that, and then tsan complains about a data race.

// See also discussion at
// http://stackoverflow.com/questions/7223164/is-mutex-needed-to-synchronize-a-simple-flag-between-pthreads

// Using std::atomic<bool> or std::atomic_flag in C++11 is probably
// the right thing to do, but those features are not yet allowed. Or
// rtc::AtomicInt, if/when that is added. Since the use isn't
// performance critical, use a plain critical section for the time
// being.

class AtomicBool {
 public:
  explicit AtomicBool(bool value = false) : flag_(value) {}
  AtomicBool& operator=(bool value) {
    webrtc::MutexLock scoped_lock(&mutex_);
    flag_ = value;
    return *this;
  }
  bool get() const {
    webrtc::MutexLock scoped_lock(&mutex_);
    return flag_;
  }

 private:
  mutable webrtc::Mutex mutex_;
  bool flag_;
};

// Function objects to test Thread::Invoke.
struct FunctorA {
  int operator()() { return 42; }
};
class FunctorB {
 public:
  explicit FunctorB(AtomicBool* flag) : flag_(flag) {}
  void operator()() {
    if (flag_)
      *flag_ = true;
  }

 private:
  AtomicBool* flag_;
};
struct FunctorC {
  int operator()() {
    Thread::Current()->ProcessMessages(50);
    return 24;
  }
};
struct FunctorD {
 public:
  explicit FunctorD(AtomicBool* flag) : flag_(flag) {}
  FunctorD(FunctorD&&) = default;
  FunctorD& operator=(FunctorD&&) = default;
  void operator()() {
    if (flag_)
      *flag_ = true;
  }

 private:
  AtomicBool* flag_;
  RTC_DISALLOW_COPY_AND_ASSIGN(FunctorD);
};

// See: https://code.google.com/p/webrtc/issues/detail?id=2409
TEST(ThreadTest, DISABLED_Main) {
  const SocketAddress addr("127.0.0.1", 0);

  // Create the messaging client on its own thread.
  auto th1 = Thread::CreateWithSocketServer();
  Socket* socket =
      th1->socketserver()->CreateAsyncSocket(addr.family(), SOCK_DGRAM);
  MessageClient msg_client(th1.get(), socket);

  // Create the socket client on its own thread.
  auto th2 = Thread::CreateWithSocketServer();
  AsyncSocket* asocket =
      th2->socketserver()->CreateAsyncSocket(addr.family(), SOCK_DGRAM);
  SocketClient sock_client(asocket, addr, th1.get(), &msg_client);

  socket->Connect(sock_client.address());

  th1->Start();
  th2->Start();

  // Get the messages started.
  th1->PostDelayed(RTC_FROM_HERE, 100, &msg_client, 0, new TestMessage(1));

  // Give the clients a little while to run.
  // Messages will be processed at 100, 300, 500, 700, 900.
  Thread* th_main = Thread::Current();
  th_main->ProcessMessages(1000);

  // Stop the sending client. Give the receiver a bit longer to run, in case
  // it is running on a machine that is under load (e.g. the build machine).
  th1->Stop();
  th_main->ProcessMessages(200);
  th2->Stop();

  // Make sure the results were correct
  EXPECT_EQ(5, msg_client.count);
  EXPECT_EQ(34, msg_client.last);
  EXPECT_EQ(5, sock_client.count);
  EXPECT_EQ(55, sock_client.last);
}

TEST(ThreadTest, CountBlockingCalls) {
  // When the test runs, this will print out:
  //   (thread_unittest.cc:262): Blocking TestBody: total=2 (actual=1, could=1)
  RTC_LOG_THREAD_BLOCK_COUNT();
#if RTC_DCHECK_IS_ON
  rtc::Thread* current = rtc::Thread::Current();
  ASSERT_TRUE(current);
  rtc::Thread::ScopedCountBlockingCalls blocked_calls(
      [&](uint32_t actual_block, uint32_t could_block) {
        EXPECT_EQ(1u, actual_block);
        EXPECT_EQ(1u, could_block);
      });

  EXPECT_EQ(0u, blocked_calls.GetBlockingCallCount());
  EXPECT_EQ(0u, blocked_calls.GetCouldBeBlockingCallCount());
  EXPECT_EQ(0u, blocked_calls.GetTotalBlockedCallCount());

  // Test invoking on the current thread. This should not count as an 'actual'
  // invoke, but should still count as an invoke that could block since we
  // that the call to Invoke serves a purpose in some configurations (and should
  // not be used a general way to call methods on the same thread).
  current->Invoke<void>(RTC_FROM_HERE, []() {});
  EXPECT_EQ(0u, blocked_calls.GetBlockingCallCount());
  EXPECT_EQ(1u, blocked_calls.GetCouldBeBlockingCallCount());
  EXPECT_EQ(1u, blocked_calls.GetTotalBlockedCallCount());

  // Create a new thread to invoke on.
  auto thread = Thread::CreateWithSocketServer();
  thread->Start();
  EXPECT_EQ(42, thread->Invoke<int>(RTC_FROM_HERE, []() { return 42; }));
  EXPECT_EQ(1u, blocked_calls.GetBlockingCallCount());
  EXPECT_EQ(1u, blocked_calls.GetCouldBeBlockingCallCount());
  EXPECT_EQ(2u, blocked_calls.GetTotalBlockedCallCount());
  thread->Stop();
  RTC_DCHECK_BLOCK_COUNT_NO_MORE_THAN(2);
#else
  RTC_DCHECK_BLOCK_COUNT_NO_MORE_THAN(0);
  RTC_LOG(LS_INFO) << "Test not active in this config";
#endif
}

#if RTC_DCHECK_IS_ON
TEST(ThreadTest, CountBlockingCallsOneCallback) {
  rtc::Thread* current = rtc::Thread::Current();
  ASSERT_TRUE(current);
  bool was_called_back = false;
  {
    rtc::Thread::ScopedCountBlockingCalls blocked_calls(
        [&](uint32_t actual_block, uint32_t could_block) {
          was_called_back = true;
        });
    current->Invoke<void>(RTC_FROM_HERE, []() {});
  }
  EXPECT_TRUE(was_called_back);
}

TEST(ThreadTest, CountBlockingCallsSkipCallback) {
  rtc::Thread* current = rtc::Thread::Current();
  ASSERT_TRUE(current);
  bool was_called_back = false;
  {
    rtc::Thread::ScopedCountBlockingCalls blocked_calls(
        [&](uint32_t actual_block, uint32_t could_block) {
          was_called_back = true;
        });
    // Changed `blocked_calls` to not issue the callback if there are 1 or
    // fewer blocking calls (i.e. we set the minimum required number to 2).
    blocked_calls.set_minimum_call_count_for_callback(2);
    current->Invoke<void>(RTC_FROM_HERE, []() {});
  }
  // We should not have gotten a call back.
  EXPECT_FALSE(was_called_back);
}
#endif

// Test that setting thread names doesn't cause a malfunction.
// There's no easy way to verify the name was set properly at this time.
TEST(ThreadTest, Names) {
  // Default name
  auto thread = Thread::CreateWithSocketServer();
  EXPECT_TRUE(thread->Start());
  thread->Stop();
  // Name with no object parameter
  thread = Thread::CreateWithSocketServer();
  EXPECT_TRUE(thread->SetName("No object", nullptr));
  EXPECT_TRUE(thread->Start());
  thread->Stop();
  // Really long name
  thread = Thread::CreateWithSocketServer();
  EXPECT_TRUE(thread->SetName("Abcdefghijklmnopqrstuvwxyz1234567890", this));
  EXPECT_TRUE(thread->Start());
  thread->Stop();
}

TEST(ThreadTest, Wrap) {
  Thread* current_thread = Thread::Current();
  ThreadManager::Instance()->SetCurrentThread(nullptr);

  {
    CustomThread cthread;
    EXPECT_TRUE(cthread.WrapCurrent());
    EXPECT_EQ(&cthread, Thread::Current());
    EXPECT_TRUE(cthread.RunningForTest());
    EXPECT_FALSE(cthread.IsOwned());
    cthread.UnwrapCurrent();
    EXPECT_FALSE(cthread.RunningForTest());
  }
  ThreadManager::Instance()->SetCurrentThread(current_thread);
}

#if (!defined(NDEBUG) || defined(DCHECK_ALWAYS_ON))
TEST(ThreadTest, InvokeToThreadAllowedReturnsTrueWithoutPolicies) {
  // Create and start the thread.
  auto thread1 = Thread::CreateWithSocketServer();
  auto thread2 = Thread::CreateWithSocketServer();

  thread1->PostTask(ToQueuedTask(
      [&]() { EXPECT_TRUE(thread1->IsInvokeToThreadAllowed(thread2.get())); }));
  Thread* th_main = Thread::Current();
  th_main->ProcessMessages(100);
}

TEST(ThreadTest, InvokeAllowedWhenThreadsAdded) {
  // Create and start the thread.
  auto thread1 = Thread::CreateWithSocketServer();
  auto thread2 = Thread::CreateWithSocketServer();
  auto thread3 = Thread::CreateWithSocketServer();
  auto thread4 = Thread::CreateWithSocketServer();

  thread1->AllowInvokesToThread(thread2.get());
  thread1->AllowInvokesToThread(thread3.get());

  thread1->PostTask(ToQueuedTask([&]() {
    EXPECT_TRUE(thread1->IsInvokeToThreadAllowed(thread2.get()));
    EXPECT_TRUE(thread1->IsInvokeToThreadAllowed(thread3.get()));
    EXPECT_FALSE(thread1->IsInvokeToThreadAllowed(thread4.get()));
  }));
  Thread* th_main = Thread::Current();
  th_main->ProcessMessages(100);
}

TEST(ThreadTest, InvokesDisallowedWhenDisallowAllInvokes) {
  // Create and start the thread.
  auto thread1 = Thread::CreateWithSocketServer();
  auto thread2 = Thread::CreateWithSocketServer();

  thread1->DisallowAllInvokes();

  thread1->PostTask(ToQueuedTask([&]() {
    EXPECT_FALSE(thread1->IsInvokeToThreadAllowed(thread2.get()));
  }));
  Thread* th_main = Thread::Current();
  th_main->ProcessMessages(100);
}
#endif  // (!defined(NDEBUG) || defined(DCHECK_ALWAYS_ON))

TEST(ThreadTest, InvokesAllowedByDefault) {
  // Create and start the thread.
  auto thread1 = Thread::CreateWithSocketServer();
  auto thread2 = Thread::CreateWithSocketServer();

  thread1->PostTask(ToQueuedTask(
      [&]() { EXPECT_TRUE(thread1->IsInvokeToThreadAllowed(thread2.get())); }));
  Thread* th_main = Thread::Current();
  th_main->ProcessMessages(100);
}

TEST(ThreadTest, Invoke) {
  // Create and start the thread.
  auto thread = Thread::CreateWithSocketServer();
  thread->Start();
  // Try calling functors.
  EXPECT_EQ(42, thread->Invoke<int>(RTC_FROM_HERE, FunctorA()));
  AtomicBool called;
  FunctorB f2(&called);
  thread->Invoke<void>(RTC_FROM_HERE, f2);
  EXPECT_TRUE(called.get());
  // Try calling bare functions.
  struct LocalFuncs {
    static int Func1() { return 999; }
    static void Func2() {}
  };
  EXPECT_EQ(999, thread->Invoke<int>(RTC_FROM_HERE, &LocalFuncs::Func1));
  thread->Invoke<void>(RTC_FROM_HERE, &LocalFuncs::Func2);
}

// Verifies that two threads calling Invoke on each other at the same time does
// not deadlock but crash.
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
TEST(ThreadTest, TwoThreadsInvokeDeathTest) {
  ::testing::GTEST_FLAG(death_test_style) = "threadsafe";
  AutoThread thread;
  Thread* main_thread = Thread::Current();
  auto other_thread = Thread::CreateWithSocketServer();
  other_thread->Start();
  other_thread->Invoke<void>(RTC_FROM_HERE, [main_thread] {
    RTC_EXPECT_DEATH(main_thread->Invoke<void>(RTC_FROM_HERE, [] {}), "loop");
  });
}

TEST(ThreadTest, ThreeThreadsInvokeDeathTest) {
  ::testing::GTEST_FLAG(death_test_style) = "threadsafe";
  AutoThread thread;
  Thread* first = Thread::Current();

  auto second = Thread::Create();
  second->Start();
  auto third = Thread::Create();
  third->Start();

  second->Invoke<void>(RTC_FROM_HERE, [&] {
    third->Invoke<void>(RTC_FROM_HERE, [&] {
      RTC_EXPECT_DEATH(first->Invoke<void>(RTC_FROM_HERE, [] {}), "loop");
    });
  });
}

#endif

// Verifies that if thread A invokes a call on thread B and thread C is trying
// to invoke A at the same time, thread A does not handle C's invoke while
// invoking B.
TEST(ThreadTest, ThreeThreadsInvoke) {
  AutoThread thread;
  Thread* thread_a = Thread::Current();
  auto thread_b = Thread::CreateWithSocketServer();
  auto thread_c = Thread::CreateWithSocketServer();
  thread_b->Start();
  thread_c->Start();

  class LockedBool {
   public:
    explicit LockedBool(bool value) : value_(value) {}

    void Set(bool value) {
      webrtc::MutexLock lock(&mutex_);
      value_ = value;
    }

    bool Get() {
      webrtc::MutexLock lock(&mutex_);
      return value_;
    }

   private:
    webrtc::Mutex mutex_;
    bool value_ RTC_GUARDED_BY(mutex_);
  };

  struct LocalFuncs {
    static void Set(LockedBool* out) { out->Set(true); }
    static void InvokeSet(Thread* thread, LockedBool* out) {
      thread->Invoke<void>(RTC_FROM_HERE, [out] { Set(out); });
    }

    // Set |out| true and call InvokeSet on |thread|.
    static void SetAndInvokeSet(LockedBool* out,
                                Thread* thread,
                                LockedBool* out_inner) {
      out->Set(true);
      InvokeSet(thread, out_inner);
    }

    // Asynchronously invoke SetAndInvokeSet on |thread1| and wait until
    // |thread1| starts the call.
    static void AsyncInvokeSetAndWait(DEPRECATED_AsyncInvoker* invoker,
                                      Thread* thread1,
                                      Thread* thread2,
                                      LockedBool* out) {
      LockedBool async_invoked(false);

      invoker->AsyncInvoke<void>(
          RTC_FROM_HERE, thread1, [&async_invoked, thread2, out] {
            SetAndInvokeSet(&async_invoked, thread2, out);
          });

      EXPECT_TRUE_WAIT(async_invoked.Get(), 2000);
    }
  };

  DEPRECATED_AsyncInvoker invoker;
  LockedBool thread_a_called(false);

  // Start the sequence A --(invoke)--> B --(async invoke)--> C --(invoke)--> A.
  // Thread B returns when C receives the call and C should be blocked until A
  // starts to process messages.
  Thread* thread_c_ptr = thread_c.get();
  thread_b->Invoke<void>(
      RTC_FROM_HERE, [&invoker, thread_c_ptr, thread_a, &thread_a_called] {
        LocalFuncs::AsyncInvokeSetAndWait(&invoker, thread_c_ptr, thread_a,
                                          &thread_a_called);
      });
  EXPECT_FALSE(thread_a_called.Get());

  EXPECT_TRUE_WAIT(thread_a_called.Get(), 2000);
}

class ThreadQueueTest : public ::testing::Test, public Thread {
 public:
  ThreadQueueTest() : Thread(CreateDefaultSocketServer(), true) {}
  bool IsLocked_Worker() {
    if (!CritForTest()->TryEnter()) {
      return true;
    }
    CritForTest()->Leave();
    return false;
  }
  bool IsLocked() {
    // We have to do this on a worker thread, or else the TryEnter will
    // succeed, since our critical sections are reentrant.
    std::unique_ptr<Thread> worker(Thread::CreateWithSocketServer());
    worker->Start();
    return worker->Invoke<bool>(RTC_FROM_HERE,
                                [this] { return IsLocked_Worker(); });
  }
};

struct DeletedLockChecker {
  DeletedLockChecker(ThreadQueueTest* test, bool* was_locked, bool* deleted)
      : test(test), was_locked(was_locked), deleted(deleted) {}
  ~DeletedLockChecker() {
    *deleted = true;
    *was_locked = test->IsLocked();
  }
  ThreadQueueTest* test;
  bool* was_locked;
  bool* deleted;
};

static void DelayedPostsWithIdenticalTimesAreProcessedInFifoOrder(Thread* q) {
  EXPECT_TRUE(q != nullptr);
  int64_t now = TimeMillis();
  q->PostAt(RTC_FROM_HERE, now, nullptr, 3);
  q->PostAt(RTC_FROM_HERE, now - 2, nullptr, 0);
  q->PostAt(RTC_FROM_HERE, now - 1, nullptr, 1);
  q->PostAt(RTC_FROM_HERE, now, nullptr, 4);
  q->PostAt(RTC_FROM_HERE, now - 1, nullptr, 2);

  Message msg;
  for (size_t i = 0; i < 5; ++i) {
    memset(&msg, 0, sizeof(msg));
    EXPECT_TRUE(q->Get(&msg, 0));
    EXPECT_EQ(i, msg.message_id);
  }

  EXPECT_FALSE(q->Get(&msg, 0));  // No more messages
}

TEST_F(ThreadQueueTest, DelayedPostsWithIdenticalTimesAreProcessedInFifoOrder) {
  Thread q(CreateDefaultSocketServer(), true);
  DelayedPostsWithIdenticalTimesAreProcessedInFifoOrder(&q);

  NullSocketServer nullss;
  Thread q_nullss(&nullss, true);
  DelayedPostsWithIdenticalTimesAreProcessedInFifoOrder(&q_nullss);
}

TEST_F(ThreadQueueTest, DisposeNotLocked) {
  bool was_locked = true;
  bool deleted = false;
  DeletedLockChecker* d = new DeletedLockChecker(this, &was_locked, &deleted);
  Dispose(d);
  Message msg;
  EXPECT_FALSE(Get(&msg, 0));
  EXPECT_TRUE(deleted);
  EXPECT_FALSE(was_locked);
}

class DeletedMessageHandler : public MessageHandlerAutoCleanup {
 public:
  explicit DeletedMessageHandler(bool* deleted) : deleted_(deleted) {}
  ~DeletedMessageHandler() override { *deleted_ = true; }
  void OnMessage(Message* msg) override {}

 private:
  bool* deleted_;
};

TEST_F(ThreadQueueTest, DiposeHandlerWithPostedMessagePending) {
  bool deleted = false;
  DeletedMessageHandler* handler = new DeletedMessageHandler(&deleted);
  // First, post a dispose.
  Dispose(handler);
  // Now, post a message, which should *not* be returned by Get().
  Post(RTC_FROM_HERE, handler, 1);
  Message msg;
  EXPECT_FALSE(Get(&msg, 0));
  EXPECT_TRUE(deleted);
}

// Ensure that ProcessAllMessageQueues does its essential function; process
// all messages (both delayed and non delayed) up until the current time, on
// all registered message queues.
TEST(ThreadManager, ProcessAllMessageQueues) {
  Event entered_process_all_message_queues(true, false);
  auto a = Thread::CreateWithSocketServer();
  auto b = Thread::CreateWithSocketServer();
  a->Start();
  b->Start();

  volatile int messages_processed = 0;
  auto incrementer = [&messages_processed,
                      &entered_process_all_message_queues] {
    // Wait for event as a means to ensure Increment doesn't occur outside
    // of ProcessAllMessageQueues. The event is set by a message posted to
    // the main thread, which is guaranteed to be handled inside
    // ProcessAllMessageQueues.
    entered_process_all_message_queues.Wait(Event::kForever);
    AtomicOps::Increment(&messages_processed);
  };
  auto event_signaler = [&entered_process_all_message_queues] {
    entered_process_all_message_queues.Set();
  };

  // Post messages (both delayed and non delayed) to both threads.
  a->PostTask(ToQueuedTask(incrementer));
  b->PostTask(ToQueuedTask(incrementer));
  a->PostDelayedTask(ToQueuedTask(incrementer), 0);
  b->PostDelayedTask(ToQueuedTask(incrementer), 0);
  rtc::Thread::Current()->PostTask(ToQueuedTask(event_signaler));

  ThreadManager::ProcessAllMessageQueuesForTesting();
  EXPECT_EQ(4, AtomicOps::AcquireLoad(&messages_processed));
}

// Test that ProcessAllMessageQueues doesn't hang if a thread is quitting.
TEST(ThreadManager, ProcessAllMessageQueuesWithQuittingThread) {
  auto t = Thread::CreateWithSocketServer();
  t->Start();
  t->Quit();
  ThreadManager::ProcessAllMessageQueuesForTesting();
}

// Test that ProcessAllMessageQueues doesn't hang if a queue clears its
// messages.
TEST(ThreadManager, ProcessAllMessageQueuesWithClearedQueue) {
  Event entered_process_all_message_queues(true, false);
  auto t = Thread::CreateWithSocketServer();
  t->Start();

  auto clearer = [&entered_process_all_message_queues] {
    // Wait for event as a means to ensure Clear doesn't occur outside of
    // ProcessAllMessageQueues. The event is set by a message posted to the
    // main thread, which is guaranteed to be handled inside
    // ProcessAllMessageQueues.
    entered_process_all_message_queues.Wait(Event::kForever);
    rtc::Thread::Current()->Clear(nullptr);
  };
  auto event_signaler = [&entered_process_all_message_queues] {
    entered_process_all_message_queues.Set();
  };

  // Post messages (both delayed and non delayed) to both threads.
  t->PostTask(RTC_FROM_HERE, clearer);
  rtc::Thread::Current()->PostTask(RTC_FROM_HERE, event_signaler);
  ThreadManager::ProcessAllMessageQueuesForTesting();
}

class RefCountedHandler : public MessageHandlerAutoCleanup,
                          public rtc::RefCountInterface {
 public:
  void OnMessage(Message* msg) override {}
};

class EmptyHandler : public MessageHandlerAutoCleanup {
 public:
  void OnMessage(Message* msg) override {}
};

TEST(ThreadManager, ClearReentrant) {
  std::unique_ptr<Thread> t(Thread::Create());
  EmptyHandler handler;
  RefCountedHandler* inner_handler(
      new rtc::RefCountedObject<RefCountedHandler>());
  // When the empty handler is destroyed, it will clear messages queued for
  // itself. The message to be cleared itself wraps a MessageHandler object
  // (RefCountedHandler) so this will cause the message queue to be cleared
  // again in a re-entrant fashion, which previously triggered a DCHECK.
  // The inner handler will be removed in a re-entrant fashion from the
  // message queue of the thread while the outer handler is removed, verifying
  // that the iterator is not invalidated in "MessageQueue::Clear".
  t->Post(RTC_FROM_HERE, inner_handler, 0);
  t->Post(RTC_FROM_HERE, &handler, 0,
          new ScopedRefMessageData<RefCountedHandler>(inner_handler));
}

class AsyncInvokeTest : public ::testing::Test {
 public:
  void IntCallback(int value) {
    EXPECT_EQ(expected_thread_, Thread::Current());
    int_value_ = value;
  }
  void SetExpectedThreadForIntCallback(Thread* thread) {
    expected_thread_ = thread;
  }

 protected:
  enum { kWaitTimeout = 1000 };
  AsyncInvokeTest() : int_value_(0), expected_thread_(nullptr) {}

  int int_value_;
  Thread* expected_thread_;
};

TEST_F(AsyncInvokeTest, FireAndForget) {
  DEPRECATED_AsyncInvoker invoker;
  // Create and start the thread.
  auto thread = Thread::CreateWithSocketServer();
  thread->Start();
  // Try calling functor.
  AtomicBool called;
  invoker.AsyncInvoke<void>(RTC_FROM_HERE, thread.get(), FunctorB(&called));
  EXPECT_TRUE_WAIT(called.get(), kWaitTimeout);
  thread->Stop();
}

TEST_F(AsyncInvokeTest, NonCopyableFunctor) {
  DEPRECATED_AsyncInvoker invoker;
  // Create and start the thread.
  auto thread = Thread::CreateWithSocketServer();
  thread->Start();
  // Try calling functor.
  AtomicBool called;
  invoker.AsyncInvoke<void>(RTC_FROM_HERE, thread.get(), FunctorD(&called));
  EXPECT_TRUE_WAIT(called.get(), kWaitTimeout);
  thread->Stop();
}

TEST_F(AsyncInvokeTest, KillInvokerDuringExecute) {
  // Use these events to get in a state where the functor is in the middle of
  // executing, and then to wait for it to finish, ensuring the "EXPECT_FALSE"
  // is run.
  Event functor_started;
  Event functor_continue;
  Event functor_finished;

  auto thread = Thread::CreateWithSocketServer();
  thread->Start();
  volatile bool invoker_destroyed = false;
  {
    auto functor = [&functor_started, &functor_continue, &functor_finished,
                    &invoker_destroyed] {
      functor_started.Set();
      functor_continue.Wait(Event::kForever);
      rtc::Thread::Current()->SleepMs(kWaitTimeout);
      EXPECT_FALSE(invoker_destroyed);
      functor_finished.Set();
    };
    DEPRECATED_AsyncInvoker invoker;
    invoker.AsyncInvoke<void>(RTC_FROM_HERE, thread.get(), functor);
    functor_started.Wait(Event::kForever);

    // Destroy the invoker while the functor is still executing (doing
    // SleepMs).
    functor_continue.Set();
  }

  // If the destructor DIDN'T wait for the functor to finish executing, it will
  // hit the EXPECT_FALSE(invoker_destroyed) after it finishes sleeping for a
  // second.
  invoker_destroyed = true;
  functor_finished.Wait(Event::kForever);
}

// Variant of the above test where the async-invoked task calls AsyncInvoke
// *again*, for the thread on which the AsyncInvoker is currently being
// destroyed. This shouldn't deadlock or crash; this second invocation should
// just be ignored.
TEST_F(AsyncInvokeTest, KillInvokerDuringExecuteWithReentrantInvoke) {
  Event functor_started;
  // Flag used to verify that the recursively invoked task never actually runs.
  bool reentrant_functor_run = false;

  Thread* main = Thread::Current();
  Thread thread(std::make_unique<NullSocketServer>());
  thread.Start();
  {
    DEPRECATED_AsyncInvoker invoker;
    auto reentrant_functor = [&reentrant_functor_run] {
      reentrant_functor_run = true;
    };
    auto functor = [&functor_started, &invoker, main, reentrant_functor] {
      functor_started.Set();
      Thread::Current()->SleepMs(kWaitTimeout);
      invoker.AsyncInvoke<void>(RTC_FROM_HERE, main, reentrant_functor);
    };
    // This queues a task on |thread| to sleep for |kWaitTimeout| then queue a
    // task on |main|. But this second queued task should never run, since the
    // destructor will be entered before it's even invoked.
    invoker.AsyncInvoke<void>(RTC_FROM_HERE, &thread, functor);
    functor_started.Wait(Event::kForever);
  }
  EXPECT_FALSE(reentrant_functor_run);
}

TEST_F(AsyncInvokeTest, Flush) {
  DEPRECATED_AsyncInvoker invoker;
  AtomicBool flag1;
  AtomicBool flag2;
  // Queue two async calls to the current thread.
  invoker.AsyncInvoke<void>(RTC_FROM_HERE, Thread::Current(), FunctorB(&flag1));
  invoker.AsyncInvoke<void>(RTC_FROM_HERE, Thread::Current(), FunctorB(&flag2));
  // Because we haven't pumped messages, these should not have run yet.
  EXPECT_FALSE(flag1.get());
  EXPECT_FALSE(flag2.get());
  // Force them to run now.
  invoker.Flush(Thread::Current());
  EXPECT_TRUE(flag1.get());
  EXPECT_TRUE(flag2.get());
}

TEST_F(AsyncInvokeTest, FlushWithIds) {
  DEPRECATED_AsyncInvoker invoker;
  AtomicBool flag1;
  AtomicBool flag2;
  // Queue two async calls to the current thread, one with a message id.
  invoker.AsyncInvoke<void>(RTC_FROM_HERE, Thread::Current(), FunctorB(&flag1),
                            5);
  invoker.AsyncInvoke<void>(RTC_FROM_HERE, Thread::Current(), FunctorB(&flag2));
  // Because we haven't pumped messages, these should not have run yet.
  EXPECT_FALSE(flag1.get());
  EXPECT_FALSE(flag2.get());
  // Execute pending calls with id == 5.
  invoker.Flush(Thread::Current(), 5);
  EXPECT_TRUE(flag1.get());
  EXPECT_FALSE(flag2.get());
  flag1 = false;
  // Execute all pending calls. The id == 5 call should not execute again.
  invoker.Flush(Thread::Current());
  EXPECT_FALSE(flag1.get());
  EXPECT_TRUE(flag2.get());
}

void WaitAndSetEvent(Event* wait_event, Event* set_event) {
  wait_event->Wait(Event::kForever);
  set_event->Set();
}

// A functor that keeps track of the number of copies and moves.
class LifeCycleFunctor {
 public:
  struct Stats {
    size_t copy_count = 0;
    size_t move_count = 0;
  };

  LifeCycleFunctor(Stats* stats, Event* event) : stats_(stats), event_(event) {}
  LifeCycleFunctor(const LifeCycleFunctor& other) { *this = other; }
  LifeCycleFunctor(LifeCycleFunctor&& other) { *this = std::move(other); }

  LifeCycleFunctor& operator=(const LifeCycleFunctor& other) {
    stats_ = other.stats_;
    event_ = other.event_;
    ++stats_->copy_count;
    return *this;
  }

  LifeCycleFunctor& operator=(LifeCycleFunctor&& other) {
    stats_ = other.stats_;
    event_ = other.event_;
    ++stats_->move_count;
    return *this;
  }

  void operator()() { event_->Set(); }

 private:
  Stats* stats_;
  Event* event_;
};

// A functor that verifies the thread it was destroyed on.
class DestructionFunctor {
 public:
  DestructionFunctor(Thread* thread, bool* thread_was_current, Event* event)
      : thread_(thread),
        thread_was_current_(thread_was_current),
        event_(event) {}
  ~DestructionFunctor() {
    // Only signal the event if this was the functor that was invoked to avoid
    // the event being signaled due to the destruction of temporary/moved
    // versions of this object.
    if (was_invoked_) {
      *thread_was_current_ = thread_->IsCurrent();
      event_->Set();
    }
  }

  void operator()() { was_invoked_ = true; }

 private:
  Thread* thread_;
  bool* thread_was_current_;
  Event* event_;
  bool was_invoked_ = false;
};

TEST(ThreadPostTaskTest, InvokesWithLambda) {
  std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
  background_thread->Start();

  Event event;
  background_thread->PostTask(RTC_FROM_HERE, [&event] { event.Set(); });
  event.Wait(Event::kForever);
}

TEST(ThreadPostTaskTest, InvokesWithCopiedFunctor) {
  std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
  background_thread->Start();

  LifeCycleFunctor::Stats stats;
  Event event;
  LifeCycleFunctor functor(&stats, &event);
  background_thread->PostTask(RTC_FROM_HERE, functor);
  event.Wait(Event::kForever);

  EXPECT_EQ(1u, stats.copy_count);
  EXPECT_EQ(0u, stats.move_count);
}

TEST(ThreadPostTaskTest, InvokesWithMovedFunctor) {
  std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
  background_thread->Start();

  LifeCycleFunctor::Stats stats;
  Event event;
  LifeCycleFunctor functor(&stats, &event);
  background_thread->PostTask(RTC_FROM_HERE, std::move(functor));
  event.Wait(Event::kForever);

  EXPECT_EQ(0u, stats.copy_count);
  EXPECT_EQ(1u, stats.move_count);
}

TEST(ThreadPostTaskTest, InvokesWithReferencedFunctorShouldCopy) {
  std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
  background_thread->Start();

  LifeCycleFunctor::Stats stats;
  Event event;
  LifeCycleFunctor functor(&stats, &event);
  LifeCycleFunctor& functor_ref = functor;
  background_thread->PostTask(RTC_FROM_HERE, functor_ref);
  event.Wait(Event::kForever);

  EXPECT_EQ(1u, stats.copy_count);
  EXPECT_EQ(0u, stats.move_count);
}

TEST(ThreadPostTaskTest, InvokesWithCopiedFunctorDestroyedOnTargetThread) {
  std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
  background_thread->Start();

  Event event;
  bool was_invoked_on_background_thread = false;
  DestructionFunctor functor(background_thread.get(),
                             &was_invoked_on_background_thread, &event);
  background_thread->PostTask(RTC_FROM_HERE, functor);
  event.Wait(Event::kForever);

  EXPECT_TRUE(was_invoked_on_background_thread);
}

TEST(ThreadPostTaskTest, InvokesWithMovedFunctorDestroyedOnTargetThread) {
  std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
  background_thread->Start();

  Event event;
  bool was_invoked_on_background_thread = false;
  DestructionFunctor functor(background_thread.get(),
                             &was_invoked_on_background_thread, &event);
  background_thread->PostTask(RTC_FROM_HERE, std::move(functor));
  event.Wait(Event::kForever);

  EXPECT_TRUE(was_invoked_on_background_thread);
}

TEST(ThreadPostTaskTest,
     InvokesWithReferencedFunctorShouldCopyAndDestroyedOnTargetThread) {
  std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
  background_thread->Start();

  Event event;
  bool was_invoked_on_background_thread = false;
  DestructionFunctor functor(background_thread.get(),
                             &was_invoked_on_background_thread, &event);
  DestructionFunctor& functor_ref = functor;
  background_thread->PostTask(RTC_FROM_HERE, functor_ref);
  event.Wait(Event::kForever);

  EXPECT_TRUE(was_invoked_on_background_thread);
}

TEST(ThreadPostTaskTest, InvokesOnBackgroundThread) {
  std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
  background_thread->Start();

  Event event;
  bool was_invoked_on_background_thread = false;
  Thread* background_thread_ptr = background_thread.get();
  background_thread->PostTask(
      RTC_FROM_HERE,
      [background_thread_ptr, &was_invoked_on_background_thread, &event] {
        was_invoked_on_background_thread = background_thread_ptr->IsCurrent();
        event.Set();
      });
  event.Wait(Event::kForever);

  EXPECT_TRUE(was_invoked_on_background_thread);
}

TEST(ThreadPostTaskTest, InvokesAsynchronously) {
  std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
  background_thread->Start();

  // The first event ensures that SendSingleMessage() is not blocking this
  // thread. The second event ensures that the message is processed.
  Event event_set_by_test_thread;
  Event event_set_by_background_thread;
  background_thread->PostTask(RTC_FROM_HERE, [&event_set_by_test_thread,
                                              &event_set_by_background_thread] {
    WaitAndSetEvent(&event_set_by_test_thread, &event_set_by_background_thread);
  });
  event_set_by_test_thread.Set();
  event_set_by_background_thread.Wait(Event::kForever);
}

TEST(ThreadPostTaskTest, InvokesInPostedOrder) {
  std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
  background_thread->Start();

  Event first;
  Event second;
  Event third;
  Event fourth;

  background_thread->PostTask(
      RTC_FROM_HERE, [&first, &second] { WaitAndSetEvent(&first, &second); });
  background_thread->PostTask(
      RTC_FROM_HERE, [&second, &third] { WaitAndSetEvent(&second, &third); });
  background_thread->PostTask(
      RTC_FROM_HERE, [&third, &fourth] { WaitAndSetEvent(&third, &fourth); });

  // All tasks have been posted before the first one is unblocked.
  first.Set();
  // Only if the chain is invoked in posted order will the last event be set.
  fourth.Wait(Event::kForever);
}

TEST(ThreadPostDelayedTaskTest, InvokesAsynchronously) {
  std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
  background_thread->Start();

  // The first event ensures that SendSingleMessage() is not blocking this
  // thread. The second event ensures that the message is processed.
  Event event_set_by_test_thread;
  Event event_set_by_background_thread;
  background_thread->PostDelayedTask(
      RTC_FROM_HERE,
      [&event_set_by_test_thread, &event_set_by_background_thread] {
        WaitAndSetEvent(&event_set_by_test_thread,
                        &event_set_by_background_thread);
      },
      /*milliseconds=*/10);
  event_set_by_test_thread.Set();
  event_set_by_background_thread.Wait(Event::kForever);
}

TEST(ThreadPostDelayedTaskTest, InvokesInDelayOrder) {
  ScopedFakeClock clock;
  std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
  background_thread->Start();

  Event first;
  Event second;
  Event third;
  Event fourth;

  background_thread->PostDelayedTask(
      RTC_FROM_HERE, [&third, &fourth] { WaitAndSetEvent(&third, &fourth); },
      /*milliseconds=*/11);
  background_thread->PostDelayedTask(
      RTC_FROM_HERE, [&first, &second] { WaitAndSetEvent(&first, &second); },
      /*milliseconds=*/9);
  background_thread->PostDelayedTask(
      RTC_FROM_HERE, [&second, &third] { WaitAndSetEvent(&second, &third); },
      /*milliseconds=*/10);

  // All tasks have been posted before the first one is unblocked.
  first.Set();
  // Only if the chain is invoked in delay order will the last event be set.
  clock.AdvanceTime(webrtc::TimeDelta::Millis(11));
  EXPECT_TRUE(fourth.Wait(0));
}

TEST(ThreadPostDelayedTaskTest, IsCurrentTaskQueue) {
  auto current_tq = webrtc::TaskQueueBase::Current();
  {
    std::unique_ptr<rtc::Thread> thread(rtc::Thread::Create());
    thread->WrapCurrent();
    EXPECT_EQ(webrtc::TaskQueueBase::Current(),
              static_cast<webrtc::TaskQueueBase*>(thread.get()));
    thread->UnwrapCurrent();
  }
  EXPECT_EQ(webrtc::TaskQueueBase::Current(), current_tq);
}

class ThreadFactory : public webrtc::TaskQueueFactory {
 public:
  std::unique_ptr<webrtc::TaskQueueBase, webrtc::TaskQueueDeleter>
  CreateTaskQueue(absl::string_view /* name */,
                  Priority /*priority*/) const override {
    std::unique_ptr<Thread> thread = Thread::Create();
    thread->Start();
    return std::unique_ptr<webrtc::TaskQueueBase, webrtc::TaskQueueDeleter>(
        thread.release());
  }
};

using ::webrtc::TaskQueueTest;

INSTANTIATE_TEST_SUITE_P(RtcThread,
                         TaskQueueTest,
                         ::testing::Values(std::make_unique<ThreadFactory>));

}  // namespace
}  // namespace rtc