aboutsummaryrefslogtreecommitdiff
path: root/src/common_audio/vad/vad_sp.c
blob: 4fface3a6429efaff181071c67b1afcdca3892be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/*
 *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "vad_sp.h"

#include <assert.h>

#include "signal_processing_library.h"
#include "typedefs.h"
#include "vad_defines.h"

// Allpass filter coefficients, upper and lower, in Q13.
// Upper: 0.64, Lower: 0.17.
static const int16_t kAllPassCoefsQ13[2] = { 5243, 1392 };  // Q13

// TODO(bjornv): Move this function to vad_filterbank.c.
// Downsampling filter based on splitting filter and allpass functions.
void WebRtcVad_Downsampling(int16_t* signal_in,
                            int16_t* signal_out,
                            int32_t* filter_state,
                            int in_length) {
  int16_t tmp16_1 = 0, tmp16_2 = 0;
  int32_t tmp32_1 = filter_state[0];
  int32_t tmp32_2 = filter_state[1];
  int n = 0;
  int half_length = (in_length >> 1);  // Downsampling by 2 gives half length.

  // Filter coefficients in Q13, filter state in Q0.
  for (n = 0; n < half_length; n++) {
    // All-pass filtering upper branch.
    tmp16_1 = (int16_t) ((tmp32_1 >> 1) +
        WEBRTC_SPL_MUL_16_16_RSFT(kAllPassCoefsQ13[0], *signal_in, 14));
    *signal_out = tmp16_1;
    tmp32_1 = (int32_t) (*signal_in++) -
        WEBRTC_SPL_MUL_16_16_RSFT(kAllPassCoefsQ13[0], tmp16_1, 12);

    // All-pass filtering lower branch.
    tmp16_2 = (int16_t) ((tmp32_2 >> 1) +
        WEBRTC_SPL_MUL_16_16_RSFT(kAllPassCoefsQ13[1], *signal_in, 14));
    *signal_out++ += tmp16_2;
    tmp32_2 = (int32_t) (*signal_in++) -
        WEBRTC_SPL_MUL_16_16_RSFT(kAllPassCoefsQ13[1], tmp16_2, 12);
  }
  // Store the filter states.
  filter_state[0] = tmp32_1;
  filter_state[1] = tmp32_2;
}

// Inserts |feature_value| into |low_value_vector|, if it is one of the 16
// smallest values the last 100 frames. Then calculates and returns the median
// of the five smallest values.
int16_t WebRtcVad_FindMinimum(VadInstT* self,
                              int16_t feature_value,
                              int channel) {
  int i = 0, j = 0;
  int position = -1;
  // Offset to beginning of the 16 minimum values in memory.
  int offset = (channel << 4);
  int16_t current_median = 1600;
  int16_t alpha = 0;
  int32_t tmp32 = 0;
  // Pointer to memory for the 16 minimum values and the age of each value of
  // the |channel|.
  int16_t* age_ptr = &self->index_vector[offset];
  int16_t* value_ptr = &self->low_value_vector[offset];
  int16_t *p1, *p2, *p3;

  assert(channel < NUM_CHANNELS);

  // Each value in |low_value_vector| is getting 1 loop older.
  // Update age of each value in |age_ptr|, and remove old values.
  for (i = 0; i < 16; i++) {
    p3 = age_ptr + i;
    if (*p3 != 100) {
      *p3 += 1;
    } else {
      p1 = value_ptr + i + 1;
      p2 = p3 + 1;
      for (j = i; j < 16; j++) {
        *(value_ptr + j) = *p1++;
        *(age_ptr + j) = *p2++;
      }
      *(age_ptr + 15) = 101;
      *(value_ptr + 15) = 10000;
    }
  }

  // Check if |feature_value| is smaller than any of the values in
  // |low_value_vector|. If so, find the |position| where to insert the new
  // value.
  if (feature_value < *(value_ptr + 7)) {
    if (feature_value < *(value_ptr + 3)) {
      if (feature_value < *(value_ptr + 1)) {
        if (feature_value < *value_ptr) {
          position = 0;
        } else {
          position = 1;
        }
      } else if (feature_value < *(value_ptr + 2)) {
        position = 2;
      } else {
        position = 3;
      }
    } else if (feature_value < *(value_ptr + 5)) {
      if (feature_value < *(value_ptr + 4)) {
        position = 4;
      } else {
        position = 5;
      }
    } else if (feature_value < *(value_ptr + 6)) {
      position = 6;
    } else {
      position = 7;
    }
  } else if (feature_value < *(value_ptr + 15)) {
    if (feature_value < *(value_ptr + 11)) {
      if (feature_value < *(value_ptr + 9)) {
        if (feature_value < *(value_ptr + 8)) {
          position = 8;
        } else {
          position = 9;
        }
      } else if (feature_value < *(value_ptr + 10)) {
        position = 10;
      } else {
        position = 11;
      }
    } else if (feature_value < *(value_ptr + 13)) {
      if (feature_value < *(value_ptr + 12)) {
        position = 12;
      } else {
        position = 13;
      }
    } else if (feature_value < *(value_ptr + 14)) {
      position = 14;
    } else {
      position = 15;
    }
  }

  // If we have a new small value, put it in the correct position and shift
  // larger values up.
  if (position > -1) {
    for (i = 15; i > position; i--) {
      j = i - 1;
      *(value_ptr + i) = *(value_ptr + j);
      *(age_ptr + i) = *(age_ptr + j);
    }
    *(value_ptr + position) = feature_value;
    *(age_ptr + position) = 1;
  }

  // Get |current_median|.
  if (self->frame_counter > 2) {
    current_median = *(value_ptr + 2);
  } else if (self->frame_counter > 0) {
    current_median = *value_ptr;
  }

  // Smooth the median value.
  if (self->frame_counter > 0) {
    if (current_median < self->mean_value[channel]) {
      alpha = (int16_t) ALPHA1;  // 0.2 in Q15.
    } else {
      alpha = (int16_t) ALPHA2;  // 0.99 in Q15.
    }
  }
  tmp32 = WEBRTC_SPL_MUL_16_16(alpha + 1, self->mean_value[channel]);
  tmp32 += WEBRTC_SPL_MUL_16_16(WEBRTC_SPL_WORD16_MAX - alpha, current_median);
  tmp32 += 16384;
  self->mean_value[channel] = (int16_t) (tmp32 >> 15);

  return self->mean_value[channel];
}