aboutsummaryrefslogtreecommitdiff
path: root/src/modules/audio_coding/codecs/isac/fix/source/lattice.c
blob: 14588d0f0d0068b2c1c2505675d4e150459e2f26 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
/*
 *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

/*
 * lattice.c
 *
 * Contains the normalized lattice filter routines (MA and AR) for iSAC codec
 *
 */

#include "codec.h"
#include "settings.h"

#define LATTICE_MUL_32_32_RSFT16(a32a, a32b, b32)                  \
  ((WebRtc_Word32)(WEBRTC_SPL_MUL(a32a, b32) + (WEBRTC_SPL_MUL_16_32_RSFT16(a32b, b32))))
/* This macro is FORBIDDEN to use elsewhere than in a function in this file and
   its corresponding neon version. It might give unpredictable results, since a
   general WebRtc_Word32*WebRtc_Word32 multiplication results in a 64 bit value.
   The result is then shifted just 16 steps to the right, giving need for 48
   bits, i.e. in the generel case, it will NOT fit in a WebRtc_Word32. In the
   cases used in here, the WebRtc_Word32 will be enough, since (for a good
   reason) the involved multiplicands aren't big enough to overflow a
   WebRtc_Word32 after shifting right 16 bits. I have compared the result of a
   multiplication between t32 and tmp32, done in two ways:
   1) Using (WebRtc_Word32) (((float)(tmp32))*((float)(tmp32b))/65536.0);
   2) Using LATTICE_MUL_32_32_RSFT16(t16a, t16b, tmp32b);
   By running 25 files, I haven't found any bigger diff than 64 - this was in the
   case when  method 1) gave 650235648 and 2) gave 650235712.
*/

/* Function prototype: filtering ar_g_Q0[] and ar_f_Q0[] through an AR filter
   with coefficients cth_Q15[] and sth_Q15[].
   Implemented for both generic and ARMv7 platforms.
 */
void WebRtcIsacfix_FilterArLoop(int16_t* ar_g_Q0,
                                int16_t* ar_f_Q0,
                                int16_t* cth_Q15,
                                int16_t* sth_Q15,
                                int16_t order_coef);

/* Inner loop used for function WebRtcIsacfix_NormLatticeFilterMa(). It does:
   for 0 <= n < HALF_SUBFRAMELEN - 1:
     *ptr2 = input2 * (*ptr2) + input0 * (*ptr0));
     *ptr1 = input1 * (*ptr0) + input0 * (*ptr2);
   Note, function WebRtcIsacfix_FilterMaLoopNeon and WebRtcIsacfix_FilterMaLoopC
   are not bit-exact. The accuracy by the ARM Neon function is same or better.
*/
void WebRtcIsacfix_FilterMaLoopC(int16_t input0,  // Filter coefficient
                                 int16_t input1,  // Filter coefficient
                                 int32_t input2,  // Inverse coeff. (1/input1)
                                 int32_t* ptr0,   // Sample buffer
                                 int32_t* ptr1,   // Sample buffer
                                 int32_t* ptr2) { // Sample buffer
  int n = 0;

  // Separate the 32-bit variable input2 into two 16-bit integers (high 16 and
  // low 16 bits), for using LATTICE_MUL_32_32_RSFT16 in the loop.
  int16_t t16a = (int16_t)(input2 >> 16);
  int16_t t16b = (int16_t)input2;
  if (t16b < 0) t16a++;

  // The loop filtering the samples *ptr0, *ptr1, *ptr2 with filter coefficients
  // input0, input1, and input2.
  for(n = 0; n < HALF_SUBFRAMELEN - 1; n++, ptr0++, ptr1++, ptr2++) {
    int32_t tmp32a = 0;
    int32_t tmp32b = 0;

    // Calculate *ptr2 = input2 * (*ptr2 + input0 * (*ptr0));
    tmp32a = WEBRTC_SPL_MUL_16_32_RSFT15(input0, *ptr0); // Q15 * Q15 >> 15 = Q15
    tmp32b = *ptr2 + tmp32a; // Q15 + Q15 = Q15
    *ptr2 = LATTICE_MUL_32_32_RSFT16(t16a, t16b, tmp32b);

    // Calculate *ptr1 = input1 * (*ptr0) + input0 * (*ptr2);
    tmp32a = WEBRTC_SPL_MUL_16_32_RSFT15(input1, *ptr0); // Q15*Q15>>15 = Q15
    tmp32b = WEBRTC_SPL_MUL_16_32_RSFT15(input0, *ptr2); // Q15*Q15>>15 = Q15
    *ptr1 = tmp32a + tmp32b; // Q15 + Q15 = Q15
  }
}

// Declare a function pointer.
FilterMaLoopFix WebRtcIsacfix_FilterMaLoopFix;

/* filter the signal using normalized lattice filter */
/* MA filter */
void WebRtcIsacfix_NormLatticeFilterMa(WebRtc_Word16 orderCoef,
                                       WebRtc_Word32 *stateGQ15,
                                       WebRtc_Word16 *lat_inQ0,
                                       WebRtc_Word16 *filt_coefQ15,
                                       WebRtc_Word32 *gain_lo_hiQ17,
                                       WebRtc_Word16 lo_hi,
                                       WebRtc_Word16 *lat_outQ9)
{
  WebRtc_Word16 sthQ15[MAX_AR_MODEL_ORDER];
  WebRtc_Word16 cthQ15[MAX_AR_MODEL_ORDER];

  int u, i, k, n;
  WebRtc_Word16 temp2,temp3;
  WebRtc_Word16 ord_1 = orderCoef+1;
  WebRtc_Word32 inv_cthQ16[MAX_AR_MODEL_ORDER];

  WebRtc_Word32 gain32, fQtmp;
  WebRtc_Word16 gain16;
  WebRtc_Word16 gain_sh;

  WebRtc_Word32 tmp32, tmp32b;
  WebRtc_Word32 fQ15vec[HALF_SUBFRAMELEN];
  WebRtc_Word32 gQ15[MAX_AR_MODEL_ORDER+1][HALF_SUBFRAMELEN];
  WebRtc_Word16 sh;
  WebRtc_Word16 t16a;
  WebRtc_Word16 t16b;

  for (u=0;u<SUBFRAMES;u++)
  {
    int32_t temp1 = WEBRTC_SPL_MUL_16_16(u, HALF_SUBFRAMELEN);

    /* set the Direct Form coefficients */
    temp2 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16(u, orderCoef);
    temp3 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16(2, u)+lo_hi;

    /* compute lattice filter coefficients */
    memcpy(sthQ15, &filt_coefQ15[temp2], orderCoef * sizeof(WebRtc_Word16));

    WebRtcSpl_SqrtOfOneMinusXSquared(sthQ15, orderCoef, cthQ15);

    /* compute the gain */
    gain32 = gain_lo_hiQ17[temp3];
    gain_sh = WebRtcSpl_NormW32(gain32);
    gain32 = WEBRTC_SPL_LSHIFT_W32(gain32, gain_sh); //Q(17+gain_sh)

    for (k=0;k<orderCoef;k++)
    {
      gain32 = WEBRTC_SPL_MUL_16_32_RSFT15(cthQ15[k], gain32); //Q15*Q(17+gain_sh)>>15 = Q(17+gain_sh)
      inv_cthQ16[k] = WebRtcSpl_DivW32W16((WebRtc_Word32)2147483647, cthQ15[k]); // 1/cth[k] in Q31/Q15 = Q16
    }
    gain16 = (WebRtc_Word16) WEBRTC_SPL_RSHIFT_W32(gain32, 16); //Q(1+gain_sh)

    /* normalized lattice filter */
    /*****************************/

    /* initial conditions */
    for (i=0;i<HALF_SUBFRAMELEN;i++)
    {
      fQ15vec[i] = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)lat_inQ0[i + temp1], 15); //Q15
      gQ15[0][i] = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)lat_inQ0[i + temp1], 15); //Q15
    }


    fQtmp = fQ15vec[0];

    /* get the state of f&g for the first input, for all orders */
    for (i=1;i<ord_1;i++)
    {
      // Calculate f[i][0] = inv_cth[i-1]*(f[i-1][0] + sth[i-1]*stateG[i-1]);
      tmp32 = WEBRTC_SPL_MUL_16_32_RSFT15(sthQ15[i-1], stateGQ15[i-1]);//Q15*Q15>>15 = Q15
      tmp32b= fQtmp + tmp32; //Q15+Q15=Q15
      tmp32 = inv_cthQ16[i-1]; //Q16
      t16a = (WebRtc_Word16) WEBRTC_SPL_RSHIFT_W32(tmp32, 16);
      t16b = (WebRtc_Word16) (tmp32-WEBRTC_SPL_LSHIFT_W32(((WebRtc_Word32)t16a), 16));
      if (t16b<0) t16a++;
      tmp32 = LATTICE_MUL_32_32_RSFT16(t16a, t16b, tmp32b);
      fQtmp = tmp32; // Q15

      // Calculate g[i][0] = cth[i-1]*stateG[i-1] + sth[i-1]* f[i][0];
      tmp32  = WEBRTC_SPL_MUL_16_32_RSFT15(cthQ15[i-1], stateGQ15[i-1]); //Q15*Q15>>15 = Q15
      tmp32b = WEBRTC_SPL_MUL_16_32_RSFT15(sthQ15[i-1], fQtmp); //Q15*Q15>>15 = Q15
      tmp32  = tmp32 + tmp32b;//Q15+Q15 = Q15
      gQ15[i][0] = tmp32; // Q15
    }

    /* filtering */
    /* save the states */
    for(k=0;k<orderCoef;k++)
    {
      // for 0 <= n < HALF_SUBFRAMELEN - 1:
      //   f[k+1][n+1] = inv_cth[k]*(f[k][n+1] + sth[k]*g[k][n]);
      //   g[k+1][n+1] = cth[k]*g[k][n] + sth[k]* f[k+1][n+1];
      WebRtcIsacfix_FilterMaLoopFix(sthQ15[k], cthQ15[k], inv_cthQ16[k],
                                    &gQ15[k][0], &gQ15[k+1][1], &fQ15vec[1]);
    }

    fQ15vec[0] = fQtmp;

    for(n=0;n<HALF_SUBFRAMELEN;n++)
    {
      //gain32 = WEBRTC_SPL_RSHIFT_W32(gain32, gain_sh); // Q(17+gain_sh) -> Q17
      tmp32 = WEBRTC_SPL_MUL_16_32_RSFT16(gain16, fQ15vec[n]); //Q(1+gain_sh)*Q15>>16 = Q(gain_sh)
      sh = 9-gain_sh; //number of needed shifts to reach Q9
      t16a = (WebRtc_Word16) WEBRTC_SPL_SHIFT_W32(tmp32, sh);
      lat_outQ9[n + temp1] = t16a;
    }

    /* save the states */
    for (i=0;i<ord_1;i++)
    {
      stateGQ15[i] = gQ15[i][HALF_SUBFRAMELEN-1];
    }
    //process next frame
  }

  return;
}





/* ----------------AR filter-------------------------*/
/* filter the signal using normalized lattice filter */
void WebRtcIsacfix_NormLatticeFilterAr(WebRtc_Word16 orderCoef,
                                       WebRtc_Word16 *stateGQ0,
                                       WebRtc_Word32 *lat_inQ25,
                                       WebRtc_Word16 *filt_coefQ15,
                                       WebRtc_Word32 *gain_lo_hiQ17,
                                       WebRtc_Word16 lo_hi,
                                       WebRtc_Word16 *lat_outQ0)
{
  int ii,n,k,i,u;
  WebRtc_Word16 sthQ15[MAX_AR_MODEL_ORDER];
  WebRtc_Word16 cthQ15[MAX_AR_MODEL_ORDER];
  WebRtc_Word32 tmp32;


  WebRtc_Word16 tmpAR;
  WebRtc_Word16 ARfQ0vec[HALF_SUBFRAMELEN];
  WebRtc_Word16 ARgQ0vec[MAX_AR_MODEL_ORDER+1];

  WebRtc_Word32 inv_gain32;
  WebRtc_Word16 inv_gain16;
  WebRtc_Word16 den16;
  WebRtc_Word16 sh;

  WebRtc_Word16 temp2,temp3;
  WebRtc_Word16 ord_1 = orderCoef+1;

  for (u=0;u<SUBFRAMES;u++)
  {
    int32_t temp1 = WEBRTC_SPL_MUL_16_16(u, HALF_SUBFRAMELEN);

    //set the denominator and numerator of the Direct Form
    temp2 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16(u, orderCoef);
    temp3 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16(2, u) + lo_hi;

    for (ii=0; ii<orderCoef; ii++) {
      sthQ15[ii] = filt_coefQ15[temp2+ii];
    }

    WebRtcSpl_SqrtOfOneMinusXSquared(sthQ15, orderCoef, cthQ15);

    /* Simulation of the 25 files shows that maximum value in
       the vector gain_lo_hiQ17[] is 441344, which means that
       it is log2((2^31)/441344) = 12.2 shifting bits from
       saturation. Therefore, it should be safe to use Q27 instead
       of Q17. */

    tmp32 = WEBRTC_SPL_LSHIFT_W32(gain_lo_hiQ17[temp3], 10); // Q27

    for (k=0;k<orderCoef;k++) {
      tmp32 = WEBRTC_SPL_MUL_16_32_RSFT15(cthQ15[k], tmp32); // Q15*Q27>>15 = Q27
    }

    sh = WebRtcSpl_NormW32(tmp32); // tmp32 is the gain
    den16 = (WebRtc_Word16) WEBRTC_SPL_SHIFT_W32(tmp32, sh-16); //Q(27+sh-16) = Q(sh+11) (all 16 bits are value bits)
    inv_gain32 = WebRtcSpl_DivW32W16((WebRtc_Word32)2147483647, den16); // 1/gain in Q31/Q(sh+11) = Q(20-sh)

    //initial conditions
    inv_gain16 = (WebRtc_Word16) WEBRTC_SPL_RSHIFT_W32(inv_gain32, 2); // 1/gain in Q(20-sh-2) = Q(18-sh)

    for (i=0;i<HALF_SUBFRAMELEN;i++)
    {

      tmp32 = WEBRTC_SPL_LSHIFT_W32(lat_inQ25[i + temp1], 1); //Q25->Q26
      tmp32 = WEBRTC_SPL_MUL_16_32_RSFT16(inv_gain16, tmp32); //lat_in[]*inv_gain in (Q(18-sh)*Q26)>>16 = Q(28-sh)
      tmp32 = WEBRTC_SPL_SHIFT_W32(tmp32, -(28-sh)); // lat_in[]*inv_gain in Q0

      ARfQ0vec[i] = (WebRtc_Word16)WebRtcSpl_SatW32ToW16(tmp32); // Q0
    }

    for (i=orderCoef-1;i>=0;i--) //get the state of f&g for the first input, for all orders
    {
      tmp32 = WEBRTC_SPL_RSHIFT_W32(((WEBRTC_SPL_MUL_16_16(cthQ15[i],ARfQ0vec[0])) - (WEBRTC_SPL_MUL_16_16(sthQ15[i],stateGQ0[i])) + 16384), 15);
      tmpAR = (WebRtc_Word16)WebRtcSpl_SatW32ToW16(tmp32); // Q0

      tmp32 = WEBRTC_SPL_RSHIFT_W32(((WEBRTC_SPL_MUL_16_16(sthQ15[i],ARfQ0vec[0])) + (WEBRTC_SPL_MUL_16_16(cthQ15[i], stateGQ0[i])) + 16384), 15);
      ARgQ0vec[i+1] = (WebRtc_Word16)WebRtcSpl_SatW32ToW16(tmp32); // Q0
      ARfQ0vec[0] = tmpAR;
    }
    ARgQ0vec[0] = ARfQ0vec[0];

    // Filter ARgQ0vec[] and ARfQ0vec[] through coefficients cthQ15[] and sthQ15[].
    WebRtcIsacfix_FilterArLoop(ARgQ0vec, ARfQ0vec, cthQ15, sthQ15, orderCoef);

    for(n=0;n<HALF_SUBFRAMELEN;n++)
    {
      lat_outQ0[n + temp1] = ARfQ0vec[n];
    }


    /* cannot use memcpy in the following */

    for (i=0;i<ord_1;i++)
    {
      stateGQ0[i] = ARgQ0vec[i];
    }
  }

  return;
}