aboutsummaryrefslogtreecommitdiff
path: root/src/modules/audio_processing/main/interface/audio_processing.h
blob: dc9c2325a52e02cb42517c908a72fafbd44190e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
/*
 *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_MAIN_INTERFACE_AUDIO_PROCESSING_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_MAIN_INTERFACE_AUDIO_PROCESSING_H_

#include "typedefs.h"
#include "module.h"

namespace webrtc {

class AudioFrame;
class EchoCancellation;
class EchoControlMobile;
class GainControl;
class HighPassFilter;
class LevelEstimator;
class NoiseSuppression;
class VoiceDetection;

// The Audio Processing Module (APM) provides a collection of voice processing
// components designed for real-time communications software.
//
// APM operates on two audio streams on a frame-by-frame basis. Frames of the
// primary stream, on which all processing is applied, are passed to
// |ProcessStream()|. Frames of the reverse direction stream, which are used for
// analysis by some components, are passed to |AnalyzeReverseStream()|. On the
// client-side, this will typically be the near-end (capture) and far-end
// (render) streams, respectively. APM should be placed in the signal chain as
// close to the audio hardware abstraction layer (HAL) as possible.
//
// On the server-side, the reverse stream will normally not be used, with
// processing occurring on each incoming stream.
//
// Component interfaces follow a similar pattern and are accessed through
// corresponding getters in APM. All components are disabled at create-time,
// with default settings that are recommended for most situations. New settings
// can be applied without enabling a component. Enabling a component triggers
// memory allocation and initialization to allow it to start processing the
// streams.
//
// Thread safety is provided with the following assumptions to reduce locking
// overhead:
//   1. The stream getters and setters are called from the same thread as
//      ProcessStream(). More precisely, stream functions are never called
//      concurrently with ProcessStream().
//   2. Parameter getters are never called concurrently with the corresponding
//      setter.
//
// APM accepts only 16-bit linear PCM audio data in frames of 10 ms. Multiple
// channels should be interleaved.
//
// Usage example, omitting error checking:
// AudioProcessing* apm = AudioProcessing::Create(0);
// apm->set_sample_rate_hz(32000); // Super-wideband processing.
//
// // Mono capture and stereo render.
// apm->set_num_channels(1, 1);
// apm->set_num_reverse_channels(2);
//
// apm->high_pass_filter()->Enable(true);
//
// apm->echo_cancellation()->enable_drift_compensation(false);
// apm->echo_cancellation()->Enable(true);
//
// apm->noise_reduction()->set_level(kHighSuppression);
// apm->noise_reduction()->Enable(true);
//
// apm->gain_control()->set_analog_level_limits(0, 255);
// apm->gain_control()->set_mode(kAdaptiveAnalog);
// apm->gain_control()->Enable(true);
//
// apm->voice_detection()->Enable(true);
//
// // Start a voice call...
//
// // ... Render frame arrives bound for the audio HAL ...
// apm->AnalyzeReverseStream(render_frame);
//
// // ... Capture frame arrives from the audio HAL ...
// // Call required set_stream_ functions.
// apm->set_stream_delay_ms(delay_ms);
// apm->gain_control()->set_stream_analog_level(analog_level);
//
// apm->ProcessStream(capture_frame);
//
// // Call required stream_ functions.
// analog_level = apm->gain_control()->stream_analog_level();
// has_voice = apm->stream_has_voice();
//
// // Repeate render and capture processing for the duration of the call...
// // Start a new call...
// apm->Initialize();
//
// // Close the application...
// AudioProcessing::Destroy(apm);
// apm = NULL;
//
class AudioProcessing : public Module {
 public:
  // Creates a APM instance, with identifier |id|. Use one instance for every
  // primary audio stream requiring processing. On the client-side, this would
  // typically be one instance for the near-end stream, and additional instances
  // for each far-end stream which requires processing. On the server-side,
  // this would typically be one instance for every incoming stream.
  static AudioProcessing* Create(int id);

  // Destroys a |apm| instance.
  static void Destroy(AudioProcessing* apm);

  // Initializes internal states, while retaining all user settings. This
  // should be called before beginning to process a new audio stream. However,
  // it is not necessary to call before processing the first stream after
  // creation.
  virtual int Initialize() = 0;

  // Sets the sample |rate| in Hz for both the primary and reverse audio
  // streams. 8000, 16000 or 32000 Hz are permitted.
  virtual int set_sample_rate_hz(int rate) = 0;
  virtual int sample_rate_hz() const = 0;

  // Sets the number of channels for the primary audio stream. Input frames must
  // contain a number of channels given by |input_channels|, while output frames
  // will be returned with number of channels given by |output_channels|.
  virtual int set_num_channels(int input_channels, int output_channels) = 0;
  virtual int num_input_channels() const = 0;
  virtual int num_output_channels() const = 0;

  // Sets the number of channels for the reverse audio stream. Input frames must
  // contain a number of channels given by |channels|.
  virtual int set_num_reverse_channels(int channels) = 0;
  virtual int num_reverse_channels() const = 0;

  // Processes a 10 ms |frame| of the primary audio stream. On the client-side,
  // this is the near-end (or captured) audio.
  //
  // If needed for enabled functionality, any function with the set_stream_ tag
  // must be called prior to processing the current frame. Any getter function
  // with the stream_ tag which is needed should be called after processing.
  //
  // The |_frequencyInHz|, |_audioChannel|, and |_payloadDataLengthInSamples|
  // members of |frame| must be valid, and correspond to settings supplied
  // to APM.
  virtual int ProcessStream(AudioFrame* frame) = 0;

  // Analyzes a 10 ms |frame| of the reverse direction audio stream. The frame
  // will not be modified. On the client-side, this is the far-end (or to be
  // rendered) audio.
  //
  // It is only necessary to provide this if echo processing is enabled, as the
  // reverse stream forms the echo reference signal. It is recommended, but not
  // necessary, to provide if gain control is enabled. On the server-side this
  // typically will not be used. If you're not sure what to pass in here,
  // chances are you don't need to use it.
  //
  // The |_frequencyInHz|, |_audioChannel|, and |_payloadDataLengthInSamples|
  // members of |frame| must be valid.
  //
  // TODO(ajm): add const to input; requires an implementation fix.
  virtual int AnalyzeReverseStream(AudioFrame* frame) = 0;

  // This must be called if and only if echo processing is enabled.
  //
  // Sets the |delay| in ms between AnalyzeReverseStream() receiving a far-end
  // frame and ProcessStream() receiving a near-end frame containing the
  // corresponding echo. On the client-side this can be expressed as
  //   delay = (t_render - t_analyze) + (t_process - t_capture)
  // where,
  //   - t_analyze is the time a frame is passed to AnalyzeReverseStream() and
  //     t_render is the time the first sample of the same frame is rendered by
  //     the audio hardware.
  //   - t_capture is the time the first sample of a frame is captured by the
  //     audio hardware and t_pull is the time the same frame is passed to
  //     ProcessStream().
  virtual int set_stream_delay_ms(int delay) = 0;
  virtual int stream_delay_ms() const = 0;

  // Starts recording debugging information to a file specified by |filename|,
  // a NULL-terminated string. If there is an ongoing recording, the old file
  // will be closed, and recording will continue in the newly specified file.
  // An already existing file will be overwritten without warning.
  static const int kMaxFilenameSize = 1024;
  virtual int StartDebugRecording(const char filename[kMaxFilenameSize]) = 0;

  // Stops recording debugging information, and closes the file. Recording
  // cannot be resumed in the same file (without overwriting it).
  virtual int StopDebugRecording() = 0;

  // These provide access to the component interfaces and should never return
  // NULL. The pointers will be valid for the lifetime of the APM instance.
  // The memory for these objects is entirely managed internally.
  virtual EchoCancellation* echo_cancellation() const = 0;
  virtual EchoControlMobile* echo_control_mobile() const = 0;
  virtual GainControl* gain_control() const = 0;
  virtual HighPassFilter* high_pass_filter() const = 0;
  virtual LevelEstimator* level_estimator() const = 0;
  virtual NoiseSuppression* noise_suppression() const = 0;
  virtual VoiceDetection* voice_detection() const = 0;

  struct Statistic {
    int instant;  // Instantaneous value.
    int average;  // Long-term average.
    int maximum;  // Long-term maximum.
    int minimum;  // Long-term minimum.
  };

  // Fatal errors.
  enum Errors {
    kNoError = 0,
    kUnspecifiedError = -1,
    kCreationFailedError = -2,
    kUnsupportedComponentError = -3,
    kUnsupportedFunctionError = -4,
    kNullPointerError = -5,
    kBadParameterError = -6,
    kBadSampleRateError = -7,
    kBadDataLengthError = -8,
    kBadNumberChannelsError = -9,
    kFileError = -10,
    kStreamParameterNotSetError = -11,
    kNotEnabledError = -12
  };

  // Warnings are non-fatal.
  enum Warnings {
    // This results when a set_stream_ parameter is out of range. Processing
    // will continue, but the parameter may have been truncated.
    kBadStreamParameterWarning = -13,
  };

  // Inherited from Module.
  virtual WebRtc_Word32 TimeUntilNextProcess() { return -1; };
  virtual WebRtc_Word32 Process() { return -1; };

 protected:
  virtual ~AudioProcessing() {};
};

// The acoustic echo cancellation (AEC) component provides better performance
// than AECM but also requires more processing power and is dependent on delay
// stability and reporting accuracy. As such it is well-suited and recommended
// for PC and IP phone applications.
//
// Not recommended to be enabled on the server-side.
class EchoCancellation {
 public:
  // EchoCancellation and EchoControlMobile may not be enabled simultaneously.
  // Enabling one will disable the other.
  virtual int Enable(bool enable) = 0;
  virtual bool is_enabled() const = 0;

  // Differences in clock speed on the primary and reverse streams can impact
  // the AEC performance. On the client-side, this could be seen when different
  // render and capture devices are used, particularly with webcams.
  //
  // This enables a compensation mechanism, and requires that
  // |set_device_sample_rate_hz()| and |set_stream_drift_samples()| be called.
  virtual int enable_drift_compensation(bool enable) = 0;
  virtual bool is_drift_compensation_enabled() const = 0;

  // Provides the sampling rate of the audio devices. It is assumed the render
  // and capture devices use the same nominal sample rate. Required if and only
  // if drift compensation is enabled.
  virtual int set_device_sample_rate_hz(int rate) = 0;
  virtual int device_sample_rate_hz() const = 0;

  // Sets the difference between the number of samples rendered and captured by
  // the audio devices since the last call to |ProcessStream()|. Must be called
  // if and only if drift compensation is enabled, prior to |ProcessStream()|.
  virtual int set_stream_drift_samples(int drift) = 0;
  virtual int stream_drift_samples() const = 0;

  enum SuppressionLevel {
    kLowSuppression,
    kModerateSuppression,
    kHighSuppression
  };

  // Sets the aggressiveness of the suppressor. A higher level trades off
  // double-talk performance for increased echo suppression.
  virtual int set_suppression_level(SuppressionLevel level) = 0;
  virtual SuppressionLevel suppression_level() const = 0;

  // Returns false if the current frame almost certainly contains no echo
  // and true if it _might_ contain echo.
  virtual bool stream_has_echo() const = 0;

  // Enables the computation of various echo metrics. These are obtained
  // through |GetMetrics()|.
  virtual int enable_metrics(bool enable) = 0;
  virtual bool are_metrics_enabled() const = 0;

  // Each statistic is reported in dB.
  // P_far:  Far-end (render) signal power.
  // P_echo: Near-end (capture) echo signal power.
  // P_out:  Signal power at the output of the AEC.
  // P_a:    Internal signal power at the point before the AEC's non-linear
  //         processor.
  struct Metrics {
    // RERL = ERL + ERLE
    AudioProcessing::Statistic residual_echo_return_loss;

    // ERL = 10log_10(P_far / P_echo)
    AudioProcessing::Statistic echo_return_loss;

    // ERLE = 10log_10(P_echo / P_out)
    AudioProcessing::Statistic echo_return_loss_enhancement;

    // (Pre non-linear processing suppression) A_NLP = 10log_10(P_echo / P_a)
    AudioProcessing::Statistic a_nlp;
  };

  // TODO(ajm): discuss the metrics update period.
  virtual int GetMetrics(Metrics* metrics) = 0;

 protected:
  virtual ~EchoCancellation() {};
};

// The acoustic echo control for mobile (AECM) component is a low complexity
// robust option intended for use on mobile devices.
//
// Not recommended to be enabled on the server-side.
class EchoControlMobile {
 public:
  // EchoCancellation and EchoControlMobile may not be enabled simultaneously.
  // Enabling one will disable the other.
  virtual int Enable(bool enable) = 0;
  virtual bool is_enabled() const = 0;

  // Recommended settings for particular audio routes. In general, the louder
  // the echo is expected to be, the higher this value should be set. The
  // preferred setting may vary from device to device.
  enum RoutingMode {
    kQuietEarpieceOrHeadset,
    kEarpiece,
    kLoudEarpiece,
    kSpeakerphone,
    kLoudSpeakerphone
  };

  // Sets echo control appropriate for the audio routing |mode| on the device.
  // It can and should be updated during a call if the audio routing changes.
  virtual int set_routing_mode(RoutingMode mode) = 0;
  virtual RoutingMode routing_mode() const = 0;

  // Comfort noise replaces suppressed background noise to maintain a
  // consistent signal level.
  virtual int enable_comfort_noise(bool enable) = 0;
  virtual bool is_comfort_noise_enabled() const = 0;

 protected:
  virtual ~EchoControlMobile() {};
};

// The automatic gain control (AGC) component brings the signal to an
// appropriate range. This is done by applying a digital gain directly and, in
// the analog mode, prescribing an analog gain to be applied at the audio HAL.
//
// Recommended to be enabled on the client-side.
class GainControl {
 public:
  virtual int Enable(bool enable) = 0;
  virtual bool is_enabled() const = 0;

  // When an analog mode is set, this must be called prior to |ProcessStream()|
  // to pass the current analog level from the audio HAL. Must be within the
  // range provided to |set_analog_level_limits()|.
  virtual int set_stream_analog_level(int level) = 0;

  // When an analog mode is set, this should be called after |ProcessStream()|
  // to obtain the recommended new analog level for the audio HAL. It is the
  // users responsibility to apply this level.
  virtual int stream_analog_level() = 0;

  enum Mode {
    // Adaptive mode intended for use if an analog volume control is available
    // on the capture device. It will require the user to provide coupling
    // between the OS mixer controls and AGC through the |stream_analog_level()|
    // functions.
    //
    // It consists of an analog gain prescription for the audio device and a
    // digital compression stage.
    kAdaptiveAnalog,

    // Adaptive mode intended for situations in which an analog volume control
    // is unavailable. It operates in a similar fashion to the adaptive analog
    // mode, but with scaling instead applied in the digital domain. As with
    // the analog mode, it additionally uses a digital compression stage.
    kAdaptiveDigital,

    // Fixed mode which enables only the digital compression stage also used by
    // the two adaptive modes.
    //
    // It is distinguished from the adaptive modes by considering only a
    // short time-window of the input signal. It applies a fixed gain through
    // most of the input level range, and compresses (gradually reduces gain
    // with increasing level) the input signal at higher levels. This mode is
    // preferred on embedded devices where the capture signal level is
    // predictable, so that a known gain can be applied.
    kFixedDigital
  };

  virtual int set_mode(Mode mode) = 0;
  virtual Mode mode() const = 0;

  // Sets the target peak |level| (or envelope) of the AGC in dBFs (decibels
  // from digital full-scale). The convention is to use positive values. For
  // instance, passing in a value of 3 corresponds to -3 dBFs, or a target
  // level 3 dB below full-scale. Limited to [0, 31].
  //
  // TODO(ajm): use a negative value here instead, if/when VoE will similarly
  //            update its interface.
  virtual int set_target_level_dbfs(int level) = 0;
  virtual int target_level_dbfs() const = 0;

  // Sets the maximum |gain| the digital compression stage may apply, in dB. A
  // higher number corresponds to greater compression, while a value of 0 will
  // leave the signal uncompressed. Limited to [0, 90].
  virtual int set_compression_gain_db(int gain) = 0;
  virtual int compression_gain_db() const = 0;

  // When enabled, the compression stage will hard limit the signal to the
  // target level. Otherwise, the signal will be compressed but not limited
  // above the target level.
  virtual int enable_limiter(bool enable) = 0;
  virtual bool is_limiter_enabled() const = 0;

  // Sets the |minimum| and |maximum| analog levels of the audio capture device.
  // Must be set if and only if an analog mode is used. Limited to [0, 65535].
  virtual int set_analog_level_limits(int minimum,
                                      int maximum) = 0;
  virtual int analog_level_minimum() const = 0;
  virtual int analog_level_maximum() const = 0;

  // Returns true if the AGC has detected a saturation event (period where the
  // signal reaches digital full-scale) in the current frame and the analog
  // level cannot be reduced.
  //
  // This could be used as an indicator to reduce or disable analog mic gain at
  // the audio HAL.
  virtual bool stream_is_saturated() const = 0;

 protected:
  virtual ~GainControl() {};
};

// A filtering component which removes DC offset and low-frequency noise.
// Recommended to be enabled on the client-side.
class HighPassFilter {
 public:
  virtual int Enable(bool enable) = 0;
  virtual bool is_enabled() const = 0;

 protected:
  virtual ~HighPassFilter() {};
};

// An estimation component used to retrieve level metrics.
class LevelEstimator {
 public:
  virtual int Enable(bool enable) = 0;
  virtual bool is_enabled() const = 0;

  // The metrics are reported in dBFs calculated as:
  //   Level = 10log_10(P_s / P_max) [dBFs], where
  //   P_s is the signal power and P_max is the maximum possible (or peak)
  //   power. With 16-bit signals, P_max = (2^15)^2.
  struct Metrics {
    AudioProcessing::Statistic signal;  // Overall signal level.
    AudioProcessing::Statistic speech;  // Speech level.
    AudioProcessing::Statistic noise;   // Noise level.
  };

  virtual int GetMetrics(Metrics* metrics, Metrics* reverse_metrics) = 0;

  //virtual int enable_noise_warning(bool enable) = 0;
  //bool is_noise_warning_enabled() const = 0;
  //virtual bool stream_has_high_noise() const = 0;

 protected:
  virtual ~LevelEstimator() {};
};

// The noise suppression (NS) component attempts to remove noise while
// retaining speech. Recommended to be enabled on the client-side.
//
// Recommended to be enabled on the client-side.
class NoiseSuppression {
 public:
  virtual int Enable(bool enable) = 0;
  virtual bool is_enabled() const = 0;

  // Determines the aggressiveness of the suppression. Increasing the level
  // will reduce the noise level at the expense of a higher speech distortion.
  enum Level {
    kLow,
    kModerate,
    kHigh,
    kVeryHigh
  };

  virtual int set_level(Level level) = 0;
  virtual Level level() const = 0;

 protected:
  virtual ~NoiseSuppression() {};
};

// The voice activity detection (VAD) component analyzes the stream to
// determine if voice is present. A facility is also provided to pass in an
// external VAD decision.
class VoiceDetection {
 public:
  virtual int Enable(bool enable) = 0;
  virtual bool is_enabled() const = 0;

  // Returns true if voice is detected in the current frame. Should be called
  // after |ProcessStream()|.
  virtual bool stream_has_voice() const = 0;

  // Some of the APM functionality requires a VAD decision. In the case that
  // a decision is externally available for the current frame, it can be passed
  // in here, before |ProcessStream()| is called.
  //
  // VoiceDetection does _not_ need to be enabled to use this. If it happens to
  // be enabled, detection will be skipped for any frame in which an external
  // VAD decision is provided.
  virtual int set_stream_has_voice(bool has_voice) = 0;

  // Specifies the likelihood that a frame will be declared to contain voice.
  // A higher value makes it more likely that speech will not be clipped, at
  // the expense of more noise being detected as voice.
  enum Likelihood {
    kVeryLowLikelihood,
    kLowLikelihood,
    kModerateLikelihood,
    kHighLikelihood
  };

  virtual int set_likelihood(Likelihood likelihood) = 0;
  virtual Likelihood likelihood() const = 0;

  // Sets the |size| of the frames in ms on which the VAD will operate. Larger
  // frames will improve detection accuracy, but reduce the frequency of
  // updates.
  //
  // This does not impact the size of frames passed to |ProcessStream()|.
  virtual int set_frame_size_ms(int size) = 0;
  virtual int frame_size_ms() const = 0;

 protected:
  virtual ~VoiceDetection() {};
};
}  // namespace webrtc

#endif  // WEBRTC_MODULES_AUDIO_PROCESSING_MAIN_INTERFACE_AUDIO_PROCESSING_H_