aboutsummaryrefslogtreecommitdiff
path: root/src/modules/audio_processing/ns/main/source/ns_core.c
blob: 10a1b831f771e5338d4f505e9e166036d8d0ba51 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
/*
 *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <string.h>
#include <math.h>
//#include <stdio.h>
#include <stdlib.h>
#include "noise_suppression.h"
#include "ns_core.h"
#include "windows_private.h"
#include "fft4g.h"
#include "signal_processing_library.h"

// Set Feature Extraction Parameters
void WebRtcNs_set_feature_extraction_parameters(NSinst_t *inst)
{
    //bin size of histogram
    inst->featureExtractionParams.binSizeLrt      = (float)0.1;
    inst->featureExtractionParams.binSizeSpecFlat = (float)0.05;
    inst->featureExtractionParams.binSizeSpecDiff = (float)0.1;

    //range of histogram over which lrt threshold is computed
    inst->featureExtractionParams.rangeAvgHistLrt = (float)1.0;

    //scale parameters: multiply dominant peaks of the histograms by scale factor to obtain
    // thresholds for prior model
    inst->featureExtractionParams.factor1ModelPars = (float)1.20; //for lrt and spectral diff
    inst->featureExtractionParams.factor2ModelPars = (float)0.9;  //for spectral_flatness:
                                                     // used when noise is flatter than speech

    //peak limit for spectral flatness (varies between 0 and 1)
    inst->featureExtractionParams.thresPosSpecFlat = (float)0.6;

    //limit on spacing of two highest peaks in histogram: spacing determined by bin size
    inst->featureExtractionParams.limitPeakSpacingSpecFlat = 2
            * inst->featureExtractionParams.binSizeSpecFlat;
    inst->featureExtractionParams.limitPeakSpacingSpecDiff = 2
            * inst->featureExtractionParams.binSizeSpecDiff;

    //limit on relevance of second peak:
    inst->featureExtractionParams.limitPeakWeightsSpecFlat = (float)0.5;
    inst->featureExtractionParams.limitPeakWeightsSpecDiff = (float)0.5;

    // fluctuation limit of lrt feature
    inst->featureExtractionParams.thresFluctLrt = (float)0.05;

    //limit on the max and min values for the feature thresholds
    inst->featureExtractionParams.maxLrt = (float)1.0;
    inst->featureExtractionParams.minLrt = (float)0.20;

    inst->featureExtractionParams.maxSpecFlat = (float)0.95;
    inst->featureExtractionParams.minSpecFlat = (float)0.10;

    inst->featureExtractionParams.maxSpecDiff = (float)1.0;
    inst->featureExtractionParams.minSpecDiff = (float)0.16;

    //criteria of weight of histogram peak  to accept/reject feature
    inst->featureExtractionParams.thresWeightSpecFlat = (int)(0.3
            * (inst->modelUpdatePars[1])); //for spectral flatness
    inst->featureExtractionParams.thresWeightSpecDiff = (int)(0.3
            * (inst->modelUpdatePars[1])); //for spectral difference
}

// Initialize state
int WebRtcNs_InitCore(NSinst_t *inst, WebRtc_UWord32 fs)
{
    int i;
    //We only support 10ms frames

    //check for valid pointer
    if (inst == NULL)
    {
        return -1;
    }

    // Initialization of struct
    if (fs == 8000 || fs == 16000 || fs == 32000)
    {
        inst->fs = fs;
    }
    else
    {
        return -1;
    }
    inst->windShift = 0;
    if (fs == 8000)
    {
        // We only support 10ms frames
        inst->blockLen = 80;
        inst->blockLen10ms = 80;
        inst->anaLen = 128;
        inst->window = kBlocks80w128;
        inst->outLen = 0;
    }
    else if (fs == 16000)
    {
        // We only support 10ms frames
        inst->blockLen = 160;
        inst->blockLen10ms = 160;
        inst->anaLen = 256;
        inst->window = kBlocks160w256;
        inst->outLen = 0;
    }
    else if (fs==32000)
    {
        // We only support 10ms frames
        inst->blockLen = 160;
        inst->blockLen10ms = 160;
        inst->anaLen = 256;
        inst->window = kBlocks160w256;
        inst->outLen = 0;
    }
    inst->magnLen = inst->anaLen / 2 + 1; // Number of frequency bins

    // Initialize fft work arrays.
    inst->ip[0] = 0; // Setting this triggers initialization.
    memset(inst->dataBuf, 0, sizeof(float) * ANAL_BLOCKL_MAX);
    rdft(inst->anaLen, 1, inst->dataBuf, inst->ip, inst->wfft);

    memset(inst->dataBuf, 0, sizeof(float) * ANAL_BLOCKL_MAX);
    memset(inst->syntBuf, 0, sizeof(float) * ANAL_BLOCKL_MAX);

    //for HB processing
    memset(inst->dataBufHB, 0, sizeof(float) * ANAL_BLOCKL_MAX);

    //for quantile noise estimation
    memset(inst->quantile, 0, sizeof(float) * HALF_ANAL_BLOCKL);
    for (i = 0; i < SIMULT * HALF_ANAL_BLOCKL; i++)
    {
        inst->lquantile[i] = (float)8.0;
        inst->density[i] = (float)0.3;
    }

    for (i = 0; i < SIMULT; i++)
    {
        inst->counter[i] = (int)floor((float)(END_STARTUP_LONG * (i + 1)) / (float)SIMULT);
    }

    inst->updates = 0;

    // Wiener filter initialization
    for (i = 0; i < HALF_ANAL_BLOCKL; i++)
    {
        inst->smooth[i] = (float)1.0;
    }

    // Set the aggressiveness: default
    inst->aggrMode = 0;

    //initialize variables for new method
    inst->priorSpeechProb = (float)0.5; //prior prob for speech/noise
    for (i = 0; i < HALF_ANAL_BLOCKL; i++)
    {
        inst->magnPrev[i]      = (float)0.0; //previous mag spectrum
        inst->noisePrev[i]     = (float)0.0; //previous noise-spectrum
        inst->logLrtTimeAvg[i] = LRT_FEATURE_THR; //smooth LR ratio (same as threshold)
        inst->magnAvgPause[i]  = (float)0.0; //conservative noise spectrum estimate
        inst->speechProbHB[i]  = (float)0.0; //for estimation of HB in second pass
        inst->initMagnEst[i]   = (float)0.0; //initial average mag spectrum
    }

    //feature quantities
    inst->featureData[0] = SF_FEATURE_THR;  //spectral flatness (start on threshold)
    inst->featureData[1] = (float)0.0;      //spectral entropy: not used in this version
    inst->featureData[2] = (float)0.0;      //spectral variance: not used in this version
    inst->featureData[3] = LRT_FEATURE_THR; //average lrt factor (start on threshold)
    inst->featureData[4] = SF_FEATURE_THR;  //spectral template diff (start on threshold)
    inst->featureData[5] = (float)0.0;      //normalization for spectral-diff
    inst->featureData[6] = (float)0.0;      //window time-average of input magnitude spectrum

    //histogram quantities: used to estimate/update thresholds for features
    for (i = 0; i < HIST_PAR_EST; i++)
    {
        inst->histLrt[i] = 0;
        inst->histSpecFlat[i] = 0;
        inst->histSpecDiff[i] = 0;
    }

    inst->blockInd = -1; //frame counter
    inst->priorModelPars[0] = LRT_FEATURE_THR; //default threshold for lrt feature
    inst->priorModelPars[1] = (float)0.5;      //threshold for spectral flatness:
                                               // determined on-line
    inst->priorModelPars[2] = (float)1.0;      //sgn_map par for spectral measure:
                                               // 1 for flatness measure
    inst->priorModelPars[3] = (float)0.5;      //threshold for template-difference feature:
                                               // determined on-line
    inst->priorModelPars[4] = (float)1.0;      //default weighting parameter for lrt feature
    inst->priorModelPars[5] = (float)0.0;      //default weighting parameter for
                                               // spectral flatness feature
    inst->priorModelPars[6] = (float)0.0;      //default weighting parameter for
                                               // spectral difference feature

    inst->modelUpdatePars[0] = 2;   //update flag for parameters:
                                    // 0 no update, 1=update once, 2=update every window
    inst->modelUpdatePars[1] = 500; //window for update
    inst->modelUpdatePars[2] = 0;   //counter for update of conservative noise spectrum
    //counter if the feature thresholds are updated during the sequence
    inst->modelUpdatePars[3] = inst->modelUpdatePars[1];

    inst->signalEnergy = 0.0;
    inst->sumMagn = 0.0;
    inst->whiteNoiseLevel = 0.0;
    inst->pinkNoiseNumerator = 0.0;
    inst->pinkNoiseExp = 0.0;

    WebRtcNs_set_feature_extraction_parameters(inst); // Set feature configuration

    //default mode
    WebRtcNs_set_policy_core(inst, 0);


    memset(inst->outBuf, 0, sizeof(float) * 3 * BLOCKL_MAX);

    inst->initFlag = 1;
    return 0;
}

int WebRtcNs_set_policy_core(NSinst_t *inst, int mode)
{
    // allow for modes:0,1,2,3
    if (mode < 0 || mode > 3)
    {
        return (-1);
    }

    inst->aggrMode = mode;
    if (mode == 0)
    {
        inst->overdrive = (float)1.0;
        inst->denoiseBound = (float)0.5;
        inst->gainmap = 0;
    }
    else if (mode == 1)
    {
        //inst->overdrive = (float)1.25;
        inst->overdrive = (float)1.0;
        inst->denoiseBound = (float)0.25;
        inst->gainmap = 1;
    }
    else if (mode == 2)
    {
        //inst->overdrive = (float)1.25;
        inst->overdrive = (float)1.1;
        inst->denoiseBound = (float)0.125;
        inst->gainmap = 1;
    }
    else if (mode == 3)
    {
        //inst->overdrive = (float)1.30;
        inst->overdrive = (float)1.25;
        inst->denoiseBound = (float)0.09;
        inst->gainmap = 1;
    }
    return 0;
}

// Estimate noise
void WebRtcNs_NoiseEstimation(NSinst_t *inst, float *magn, float *noise)
{
    int i, s, offset;
    float lmagn[HALF_ANAL_BLOCKL], delta;

    if (inst->updates < END_STARTUP_LONG)
    {
        inst->updates++;
    }

    for (i = 0; i < inst->magnLen; i++)
    {
        lmagn[i] = (float)log(magn[i]);
    }

    // loop over simultaneous estimates
    for (s = 0; s < SIMULT; s++)
    {
        offset = s * inst->magnLen;

        // newquantest(...)
        for (i = 0; i < inst->magnLen; i++)
        {
            // compute delta
            if (inst->density[offset + i] > 1.0)
            {
                delta = FACTOR * (float)1.0 / inst->density[offset + i];
            }
            else
            {
                delta = FACTOR;
            }

            // update log quantile estimate
            if (lmagn[i] > inst->lquantile[offset + i])
            {
                inst->lquantile[offset + i] += QUANTILE * delta
                        / (float)(inst->counter[s] + 1);
            }
            else
            {
                inst->lquantile[offset + i] -= ((float)1.0 - QUANTILE) * delta
                        / (float)(inst->counter[s] + 1);
            }

            // update density estimate
            if (fabs(lmagn[i] - inst->lquantile[offset + i]) < WIDTH)
            {
                inst->density[offset + i] = ((float)inst->counter[s] * inst->density[offset
                        + i] + (float)1.0 / ((float)2.0 * WIDTH)) / (float)(inst->counter[s]
                        + 1);
            }
        } // end loop over magnitude spectrum

        if (inst->counter[s] >= END_STARTUP_LONG)
        {
            inst->counter[s] = 0;
            if (inst->updates >= END_STARTUP_LONG)
            {
                for (i = 0; i < inst->magnLen; i++)
                {
                    inst->quantile[i] = (float)exp(inst->lquantile[offset + i]);
                }
            }
        }

        inst->counter[s]++;
    } // end loop over simultaneous estimates

    // Sequentially update the noise during startup
    if (inst->updates < END_STARTUP_LONG)
    {
        // Use the last "s" to get noise during startup that differ from zero.
        for (i = 0; i < inst->magnLen; i++)
        {
            inst->quantile[i] = (float)exp(inst->lquantile[offset + i]);
        }
    }

    for (i = 0; i < inst->magnLen; i++)
    {
        noise[i] = inst->quantile[i];
    }
}

// Extract thresholds for feature parameters
// histograms are computed over some window_size (given by inst->modelUpdatePars[1])
// thresholds and weights are extracted every window
// flag 0 means update histogram only, flag 1 means compute the thresholds/weights
// threshold and weights are returned in: inst->priorModelPars
void WebRtcNs_FeatureParameterExtraction(NSinst_t *inst, int flag)
{
    int i, useFeatureSpecFlat, useFeatureSpecDiff, numHistLrt;
    int maxPeak1, maxPeak2;
    int weightPeak1SpecFlat, weightPeak2SpecFlat, weightPeak1SpecDiff, weightPeak2SpecDiff;

    float binMid, featureSum;
    float posPeak1SpecFlat, posPeak2SpecFlat, posPeak1SpecDiff, posPeak2SpecDiff;
    float fluctLrt, avgHistLrt, avgSquareHistLrt, avgHistLrtCompl;

    //3 features: lrt, flatness, difference
    //lrt_feature = inst->featureData[3];
    //flat_feature = inst->featureData[0];
    //diff_feature = inst->featureData[4];

    //update histograms
    if (flag == 0)
    {
        // LRT
        if ((inst->featureData[3] < HIST_PAR_EST * inst->featureExtractionParams.binSizeLrt)
                && (inst->featureData[3] >= 0.0))
        {
            i = (int)(inst->featureData[3] / inst->featureExtractionParams.binSizeLrt);
            inst->histLrt[i]++;
        }
        // Spectral flatness
        if ((inst->featureData[0] < HIST_PAR_EST
                    * inst->featureExtractionParams.binSizeSpecFlat)
                && (inst->featureData[0] >= 0.0))
        {
            i = (int)(inst->featureData[0] / inst->featureExtractionParams.binSizeSpecFlat);
            inst->histSpecFlat[i]++;
        }
        // Spectral difference
        if ((inst->featureData[4] < HIST_PAR_EST
                    * inst->featureExtractionParams.binSizeSpecDiff)
                && (inst->featureData[4] >= 0.0))
        {
            i = (int)(inst->featureData[4] / inst->featureExtractionParams.binSizeSpecDiff);
            inst->histSpecDiff[i]++;
        }
    }

    // extract parameters for speech/noise probability
    if (flag == 1)
    {
        //lrt feature: compute the average over inst->featureExtractionParams.rangeAvgHistLrt
        avgHistLrt = 0.0;
        avgHistLrtCompl = 0.0;
        avgSquareHistLrt = 0.0;
        numHistLrt = 0;
        for (i = 0; i < HIST_PAR_EST; i++)
        {
            binMid = ((float)i + (float)0.5) * inst->featureExtractionParams.binSizeLrt;
            if (binMid <= inst->featureExtractionParams.rangeAvgHistLrt)
            {
                avgHistLrt += inst->histLrt[i] * binMid;
                numHistLrt += inst->histLrt[i];
            }
            avgSquareHistLrt += inst->histLrt[i] * binMid * binMid;
            avgHistLrtCompl += inst->histLrt[i] * binMid;
        }
        if (numHistLrt > 0)
        {
            avgHistLrt = avgHistLrt / ((float)numHistLrt);
        }
        avgHistLrtCompl = avgHistLrtCompl / ((float)inst->modelUpdatePars[1]);
        avgSquareHistLrt = avgSquareHistLrt / ((float)inst->modelUpdatePars[1]);
        fluctLrt = avgSquareHistLrt - avgHistLrt * avgHistLrtCompl;
        // get threshold for lrt feature:
        if (fluctLrt < inst->featureExtractionParams.thresFluctLrt)
        {
            //very low fluct, so likely noise
            inst->priorModelPars[0] = inst->featureExtractionParams.maxLrt;
        }
        else
        {
            inst->priorModelPars[0] = inst->featureExtractionParams.factor1ModelPars
                    * avgHistLrt;
            // check if value is within min/max range
            if (inst->priorModelPars[0] < inst->featureExtractionParams.minLrt)
            {
                inst->priorModelPars[0] = inst->featureExtractionParams.minLrt;
            }
            if (inst->priorModelPars[0] > inst->featureExtractionParams.maxLrt)
            {
                inst->priorModelPars[0] = inst->featureExtractionParams.maxLrt;
            }
        }
        // done with lrt feature

        //
        // for spectral flatness and spectral difference: compute the main peaks of histogram
        maxPeak1 = 0;
        maxPeak2 = 0;
        posPeak1SpecFlat = 0.0;
        posPeak2SpecFlat = 0.0;
        weightPeak1SpecFlat = 0;
        weightPeak2SpecFlat = 0;

        // peaks for flatness
        for (i = 0; i < HIST_PAR_EST; i++)
        {
            binMid = ((float)i + (float)0.5) * inst->featureExtractionParams.binSizeSpecFlat;
            if (inst->histSpecFlat[i] > maxPeak1)
            {
                // Found new "first" peak
                maxPeak2 = maxPeak1;
                weightPeak2SpecFlat = weightPeak1SpecFlat;
                posPeak2SpecFlat = posPeak1SpecFlat;

                maxPeak1 = inst->histSpecFlat[i];
                weightPeak1SpecFlat = inst->histSpecFlat[i];
                posPeak1SpecFlat = binMid;
            }
            else if (inst->histSpecFlat[i] > maxPeak2)
            {
                // Found new "second" peak
                maxPeak2 = inst->histSpecFlat[i];
                weightPeak2SpecFlat = inst->histSpecFlat[i];
                posPeak2SpecFlat = binMid;
            }
        }

        //compute two peaks for spectral difference
        maxPeak1 = 0;
        maxPeak2 = 0;
        posPeak1SpecDiff = 0.0;
        posPeak2SpecDiff = 0.0;
        weightPeak1SpecDiff = 0;
        weightPeak2SpecDiff = 0;
        // peaks for spectral difference
        for (i = 0; i < HIST_PAR_EST; i++)
        {
            binMid = ((float)i + (float)0.5) * inst->featureExtractionParams.binSizeSpecDiff;
            if (inst->histSpecDiff[i] > maxPeak1)
            {
                // Found new "first" peak
                maxPeak2 = maxPeak1;
                weightPeak2SpecDiff = weightPeak1SpecDiff;
                posPeak2SpecDiff = posPeak1SpecDiff;

                maxPeak1 = inst->histSpecDiff[i];
                weightPeak1SpecDiff = inst->histSpecDiff[i];
                posPeak1SpecDiff = binMid;
            }
            else if (inst->histSpecDiff[i] > maxPeak2)
            {
                // Found new "second" peak
                maxPeak2 = inst->histSpecDiff[i];
                weightPeak2SpecDiff = inst->histSpecDiff[i];
                posPeak2SpecDiff = binMid;
            }
        }

        // for spectrum flatness feature
        useFeatureSpecFlat = 1;
        // merge the two peaks if they are close
        if ((fabs(posPeak2SpecFlat - posPeak1SpecFlat)
                < inst->featureExtractionParams.limitPeakSpacingSpecFlat)
                && (weightPeak2SpecFlat
                        > inst->featureExtractionParams.limitPeakWeightsSpecFlat
                                * weightPeak1SpecFlat))
        {
            weightPeak1SpecFlat += weightPeak2SpecFlat;
            posPeak1SpecFlat = (float)0.5 * (posPeak1SpecFlat + posPeak2SpecFlat);
        }
        //reject if weight of peaks is not large enough, or peak value too small
        if (weightPeak1SpecFlat < inst->featureExtractionParams.thresWeightSpecFlat
                || posPeak1SpecFlat < inst->featureExtractionParams.thresPosSpecFlat)
        {
            useFeatureSpecFlat = 0;
        }
        // if selected, get the threshold
        if (useFeatureSpecFlat == 1)
        {
            // compute the threshold
            inst->priorModelPars[1] = inst->featureExtractionParams.factor2ModelPars
                    * posPeak1SpecFlat;
            //check if value is within min/max range
            if (inst->priorModelPars[1] < inst->featureExtractionParams.minSpecFlat)
            {
                inst->priorModelPars[1] = inst->featureExtractionParams.minSpecFlat;
            }
            if (inst->priorModelPars[1] > inst->featureExtractionParams.maxSpecFlat)
            {
                inst->priorModelPars[1] = inst->featureExtractionParams.maxSpecFlat;
            }
        }
        // done with flatness feature

        // for template feature
        useFeatureSpecDiff = 1;
        // merge the two peaks if they are close
        if ((fabs(posPeak2SpecDiff - posPeak1SpecDiff)
                < inst->featureExtractionParams.limitPeakSpacingSpecDiff)
                && (weightPeak2SpecDiff
                        > inst->featureExtractionParams.limitPeakWeightsSpecDiff
                                * weightPeak1SpecDiff))
        {
            weightPeak1SpecDiff += weightPeak2SpecDiff;
            posPeak1SpecDiff = (float)0.5 * (posPeak1SpecDiff + posPeak2SpecDiff);
        }
        // get the threshold value
        inst->priorModelPars[3] = inst->featureExtractionParams.factor1ModelPars
                * posPeak1SpecDiff;
        //reject if weight of peaks is not large enough
        if (weightPeak1SpecDiff < inst->featureExtractionParams.thresWeightSpecDiff)
        {
            useFeatureSpecDiff = 0;
        }
        //check if value is within min/max range
        if (inst->priorModelPars[3] < inst->featureExtractionParams.minSpecDiff)
        {
            inst->priorModelPars[3] = inst->featureExtractionParams.minSpecDiff;
        }
        if (inst->priorModelPars[3] > inst->featureExtractionParams.maxSpecDiff)
        {
            inst->priorModelPars[3] = inst->featureExtractionParams.maxSpecDiff;
        }
        // done with spectral difference feature

        // don't use template feature if fluctuation of lrt feature is very low:
        //  most likely just noise state
        if (fluctLrt < inst->featureExtractionParams.thresFluctLrt)
        {
            useFeatureSpecDiff = 0;
        }

        // select the weights between the features
        // inst->priorModelPars[4] is weight for lrt: always selected
        // inst->priorModelPars[5] is weight for spectral flatness
        // inst->priorModelPars[6] is weight for spectral difference
        featureSum = (float)(1 + useFeatureSpecFlat + useFeatureSpecDiff);
        inst->priorModelPars[4] = (float)1.0 / featureSum;
        inst->priorModelPars[5] = ((float)useFeatureSpecFlat) / featureSum;
        inst->priorModelPars[6] = ((float)useFeatureSpecDiff) / featureSum;

        // set hists to zero for next update
        if (inst->modelUpdatePars[0] >= 1)
        {
            for (i = 0; i < HIST_PAR_EST; i++)
            {
                inst->histLrt[i] = 0;
                inst->histSpecFlat[i] = 0;
                inst->histSpecDiff[i] = 0;
            }
        }
    } // end of flag == 1
}

// Compute spectral flatness on input spectrum
// magnIn is the magnitude spectrum
// spectral flatness is returned in inst->featureData[0]
void WebRtcNs_ComputeSpectralFlatness(NSinst_t *inst, float *magnIn)
{
    int i;
    int shiftLP = 1; //option to remove first bin(s) from spectral measures
    float avgSpectralFlatnessNum, avgSpectralFlatnessDen, spectralTmp;

    // comute spectral measures
    // for flatness
    avgSpectralFlatnessNum = 0.0;
    avgSpectralFlatnessDen = inst->sumMagn;
    for (i = 0; i < shiftLP; i++)
    {
        avgSpectralFlatnessDen -= magnIn[i];
    }
    // compute log of ratio of the geometric to arithmetic mean: check for log(0) case
    for (i = shiftLP; i < inst->magnLen; i++)
    {
        if (magnIn[i] > 0.0)
        {
            avgSpectralFlatnessNum += (float)log(magnIn[i]);
        }
        else
        {
            inst->featureData[0] -= SPECT_FL_TAVG * inst->featureData[0];
            return;
        }
    }
    //normalize
    avgSpectralFlatnessDen = avgSpectralFlatnessDen / inst->magnLen;
    avgSpectralFlatnessNum = avgSpectralFlatnessNum / inst->magnLen;

    //ratio and inverse log: check for case of log(0)
    spectralTmp = (float)exp(avgSpectralFlatnessNum) / avgSpectralFlatnessDen;

    //time-avg update of spectral flatness feature
    inst->featureData[0] += SPECT_FL_TAVG * (spectralTmp - inst->featureData[0]);
    // done with flatness feature
}

// Compute the difference measure between input spectrum and a template/learned noise spectrum
// magnIn is the input spectrum
// the reference/template spectrum is inst->magnAvgPause[i]
// returns (normalized) spectral difference in inst->featureData[4]
void WebRtcNs_ComputeSpectralDifference(NSinst_t *inst, float *magnIn)
{
    // avgDiffNormMagn = var(magnIn) - cov(magnIn, magnAvgPause)^2 / var(magnAvgPause)
    int i;
    float avgPause, avgMagn, covMagnPause, varPause, varMagn, avgDiffNormMagn;

    avgPause = 0.0;
    avgMagn = inst->sumMagn;
    // compute average quantities
    for (i = 0; i < inst->magnLen; i++)
    {
        //conservative smooth noise spectrum from pause frames
        avgPause += inst->magnAvgPause[i];
    }
    avgPause = avgPause / ((float)inst->magnLen);
    avgMagn = avgMagn / ((float)inst->magnLen);

    covMagnPause = 0.0;
    varPause = 0.0;
    varMagn = 0.0;
    // compute variance and covariance quantities
    for (i = 0; i < inst->magnLen; i++)
    {
        covMagnPause += (magnIn[i] - avgMagn) * (inst->magnAvgPause[i] - avgPause);
        varPause += (inst->magnAvgPause[i] - avgPause) * (inst->magnAvgPause[i] - avgPause);
        varMagn += (magnIn[i] - avgMagn) * (magnIn[i] - avgMagn);
    }
    covMagnPause = covMagnPause / ((float)inst->magnLen);
    varPause = varPause / ((float)inst->magnLen);
    varMagn = varMagn / ((float)inst->magnLen);
    // update of average magnitude spectrum
    inst->featureData[6] += inst->signalEnergy;

    avgDiffNormMagn = varMagn - (covMagnPause * covMagnPause) / (varPause + (float)0.0001);
    // normalize and compute time-avg update of difference feature
    avgDiffNormMagn = (float)(avgDiffNormMagn / (inst->featureData[5] + (float)0.0001));
    inst->featureData[4] += SPECT_DIFF_TAVG * (avgDiffNormMagn - inst->featureData[4]);
}

// Compute speech/noise probability
// speech/noise probability is returned in: probSpeechFinal
//magn is the input magnitude spectrum
//noise is the noise spectrum
//snrLocPrior is the prior snr for each freq.
//snr loc_post is the post snr for each freq.
void WebRtcNs_SpeechNoiseProb(NSinst_t *inst, float *probSpeechFinal, float *snrLocPrior,
                              float *snrLocPost)
{
    int i, sgnMap;
    float invLrt, gainPrior, indPrior;
    float logLrtTimeAvgKsum, besselTmp;
    float indicator0, indicator1, indicator2;
    float tmpFloat1, tmpFloat2;
    float weightIndPrior0, weightIndPrior1, weightIndPrior2;
    float threshPrior0, threshPrior1, threshPrior2;
    float widthPrior, widthPrior0, widthPrior1, widthPrior2;

    widthPrior0 = WIDTH_PR_MAP;
    widthPrior1 = (float)2.0 * WIDTH_PR_MAP; //width for pause region:
                                             // lower range, so increase width in tanh map
    widthPrior2 = (float)2.0 * WIDTH_PR_MAP; //for spectral-difference measure

    //threshold parameters for features
    threshPrior0 = inst->priorModelPars[0];
    threshPrior1 = inst->priorModelPars[1];
    threshPrior2 = inst->priorModelPars[3];

    //sign for flatness feature
    sgnMap = (int)(inst->priorModelPars[2]);

    //weight parameters for features
    weightIndPrior0 = inst->priorModelPars[4];
    weightIndPrior1 = inst->priorModelPars[5];
    weightIndPrior2 = inst->priorModelPars[6];

    // compute feature based on average LR factor
    // this is the average over all frequencies of the smooth log lrt
    logLrtTimeAvgKsum = 0.0;
    for (i = 0; i < inst->magnLen; i++)
    {
        tmpFloat1 = (float)1.0 + (float)2.0 * snrLocPrior[i];
        tmpFloat2 = (float)2.0 * snrLocPrior[i] / (tmpFloat1 + (float)0.0001);
        besselTmp = (snrLocPost[i] + (float)1.0) * tmpFloat2;
        inst->logLrtTimeAvg[i] += LRT_TAVG * (besselTmp - (float)log(tmpFloat1)
                - inst->logLrtTimeAvg[i]);
        logLrtTimeAvgKsum += inst->logLrtTimeAvg[i];
    }
    logLrtTimeAvgKsum = (float)logLrtTimeAvgKsum / (inst->magnLen);
    inst->featureData[3] = logLrtTimeAvgKsum;
    // done with computation of LR factor

    //
    //compute the indicator functions
    //

    // average lrt feature
    widthPrior = widthPrior0;
    //use larger width in tanh map for pause regions
    if (logLrtTimeAvgKsum < threshPrior0)
    {
        widthPrior = widthPrior1;
    }
    // compute indicator function: sigmoid map
    indicator0 = (float)0.5 * ((float)tanh(widthPrior * (logLrtTimeAvgKsum - threshPrior0))
            + (float)1.0);

    //spectral flatness feature
    tmpFloat1 = inst->featureData[0];
    widthPrior = widthPrior0;
    //use larger width in tanh map for pause regions
    if (sgnMap == 1 && (tmpFloat1 > threshPrior1))
    {
        widthPrior = widthPrior1;
    }
    if (sgnMap == -1 && (tmpFloat1 < threshPrior1))
    {
        widthPrior = widthPrior1;
    }
    // compute indicator function: sigmoid map
    indicator1 = (float)0.5 * ((float)tanh(
                                           (float)sgnMap * widthPrior * (threshPrior1
                                                   - tmpFloat1)) + (float)1.0);

    //for template spectrum-difference
    tmpFloat1 = inst->featureData[4];
    widthPrior = widthPrior0;
    //use larger width in tanh map for pause regions
    if (tmpFloat1 < threshPrior2)
    {
        widthPrior = widthPrior2;
    }
    // compute indicator function: sigmoid map
    indicator2 = (float)0.5 * ((float)tanh(widthPrior * (tmpFloat1 - threshPrior2))
            + (float)1.0);

    //combine the indicator function with the feature weights
    indPrior = weightIndPrior0 * indicator0 + weightIndPrior1 * indicator1 + weightIndPrior2
            * indicator2;
    // done with computing indicator function

    //compute the prior probability
    inst->priorSpeechProb += PRIOR_UPDATE * (indPrior - inst->priorSpeechProb);
    // make sure probabilities are within range: keep floor to 0.01
    if (inst->priorSpeechProb > 1.0)
    {
        inst->priorSpeechProb = (float)1.0;
    }
    if (inst->priorSpeechProb < 0.01)
    {
        inst->priorSpeechProb = (float)0.01;
    }

    //final speech probability: combine prior model with LR factor:
    gainPrior = ((float)1.0 - inst->priorSpeechProb) / (inst->priorSpeechProb + (float)0.0001);
    for (i = 0; i < inst->magnLen; i++)
    {
        invLrt = (float)exp(-inst->logLrtTimeAvg[i]);
        invLrt = (float)gainPrior * invLrt;
        probSpeechFinal[i] = (float)1.0 / ((float)1.0 + invLrt);
    }
}

int WebRtcNs_ProcessCore(NSinst_t *inst,
                         short *speechFrame,
                         short *speechFrameHB,
                         short *outFrame,
                         short *outFrameHB)
{
    // main routine for noise reduction

    int     flagHB = 0;
    int     i;
    const int kStartBand = 5; // Skip first frequency bins during estimation.
    int     updateParsFlag;

    float   energy1, energy2, gain, factor, factor1, factor2;
    float   signalEnergy, sumMagn;
    float   snrPrior, currentEstimateStsa;
    float   tmpFloat1, tmpFloat2, tmpFloat3, probSpeech, probNonSpeech;
    float   gammaNoiseTmp, gammaNoiseOld;
    float   noiseUpdateTmp, fTmp, dTmp;
    float   fin[BLOCKL_MAX], fout[BLOCKL_MAX];
    float   winData[ANAL_BLOCKL_MAX];
    float   magn[HALF_ANAL_BLOCKL], noise[HALF_ANAL_BLOCKL];
    float   theFilter[HALF_ANAL_BLOCKL], theFilterTmp[HALF_ANAL_BLOCKL];
    float   snrLocPost[HALF_ANAL_BLOCKL], snrLocPrior[HALF_ANAL_BLOCKL];
    float   probSpeechFinal[HALF_ANAL_BLOCKL], previousEstimateStsa[HALF_ANAL_BLOCKL];
    float   real[ANAL_BLOCKL_MAX], imag[HALF_ANAL_BLOCKL];
    // Variables during startup
    float   sum_log_i = 0.0;
    float   sum_log_i_square = 0.0;
    float   sum_log_magn = 0.0;
    float   sum_log_i_log_magn = 0.0;
    float   parametric_noise = 0.0;
    float   parametric_exp = 0.0;
    float   parametric_num = 0.0;

    // SWB variables
    int     deltaBweHB = 1;
    int     deltaGainHB = 1;
    float   decayBweHB = 1.0;
    float   gainMapParHB = 1.0;
    float   gainTimeDomainHB = 1.0;
    float   avgProbSpeechHB, avgProbSpeechHBTmp, avgFilterGainHB, gainModHB;

    // Check that initiation has been done
    if (inst->initFlag != 1)
    {
        return (-1);
    }
    // Check for valid pointers based on sampling rate
    if (inst->fs == 32000)
    {
        if (speechFrameHB == NULL)
        {
            return -1;
        }
        flagHB = 1;
        // range for averaging low band quantities for H band gain
        deltaBweHB = (int)inst->magnLen / 4;
        deltaGainHB = deltaBweHB;
    }
    //
    updateParsFlag = inst->modelUpdatePars[0];
    //

    //for LB do all processing
    // convert to float
    for (i = 0; i < inst->blockLen10ms; i++)
    {
        fin[i] = (float)speechFrame[i];
    }
    // update analysis buffer for L band
    memcpy(inst->dataBuf, inst->dataBuf + inst->blockLen10ms,
           sizeof(float) * (inst->anaLen - inst->blockLen10ms));
    memcpy(inst->dataBuf + inst->anaLen - inst->blockLen10ms, fin,
           sizeof(float) * inst->blockLen10ms);

    if (flagHB == 1)
    {
        // convert to float
        for (i = 0; i < inst->blockLen10ms; i++)
        {
            fin[i] = (float)speechFrameHB[i];
        }
        // update analysis buffer for H band
        memcpy(inst->dataBufHB, inst->dataBufHB + inst->blockLen10ms,
               sizeof(float) * (inst->anaLen - inst->blockLen10ms));
        memcpy(inst->dataBufHB + inst->anaLen - inst->blockLen10ms, fin,
               sizeof(float) * inst->blockLen10ms);
    }

    // check if processing needed
    if (inst->outLen == 0)
    {
        // windowing
        energy1 = 0.0;
        for (i = 0; i < inst->anaLen; i++)
        {
            winData[i] = inst->window[i] * inst->dataBuf[i];
            energy1 += winData[i] * winData[i];
        }
        if (energy1 == 0.0)
        {
            // synthesize the special case of zero input
            // we want to avoid updating statistics in this case:
            // Updating feature statistics when we have zeros only will cause thresholds to
            // move towards zero signal situations. This in turn has the effect that once the
            // signal is "turned on" (non-zero values) everything will be treated as speech
            // and there is no noise suppression effect. Depending on the duration of the
            // inactive signal it takes a considerable amount of time for the system to learn
            // what is noise and what is speech.

            // read out fully processed segment
            for (i = inst->windShift; i < inst->blockLen + inst->windShift; i++)
            {
                fout[i - inst->windShift] = inst->syntBuf[i];
            }
            // update synthesis buffer
            memcpy(inst->syntBuf, inst->syntBuf + inst->blockLen,
                   sizeof(float) * (inst->anaLen - inst->blockLen));
            memset(inst->syntBuf + inst->anaLen - inst->blockLen, 0,
                   sizeof(float) * inst->blockLen);

            // out buffer
            inst->outLen = inst->blockLen - inst->blockLen10ms;
            if (inst->blockLen > inst->blockLen10ms)
            {
                for (i = 0; i < inst->outLen; i++)
                {
                    inst->outBuf[i] = fout[i + inst->blockLen10ms];
                }
            }
            // convert to short
            for (i = 0; i < inst->blockLen10ms; i++)
            {
                dTmp = fout[i];
                if (dTmp < WEBRTC_SPL_WORD16_MIN)
                {
                    dTmp = WEBRTC_SPL_WORD16_MIN;
                }
                else if (dTmp > WEBRTC_SPL_WORD16_MAX)
                {
                    dTmp = WEBRTC_SPL_WORD16_MAX;
                }
                outFrame[i] = (short)dTmp;
            }

            // for time-domain gain of HB
            if (flagHB == 1)
            {
                for (i = 0; i < inst->blockLen10ms; i++)
                {
                    dTmp = inst->dataBufHB[i];
                    if (dTmp < WEBRTC_SPL_WORD16_MIN)
                    {
                        dTmp = WEBRTC_SPL_WORD16_MIN;
                    }
                    else if (dTmp > WEBRTC_SPL_WORD16_MAX)
                    {
                        dTmp = WEBRTC_SPL_WORD16_MAX;
                    }
                    outFrameHB[i] = (short)dTmp;
                }
            } // end of H band gain computation
            //
            return 0;
        }

        //
        inst->blockInd++; // Update the block index only when we process a block.
        // FFT
        rdft(inst->anaLen, 1, winData, inst->ip, inst->wfft);

        imag[0] = 0;
        real[0] = winData[0];
        magn[0] = (float)(fabs(real[0]) + 1.0f);
        imag[inst->magnLen - 1] = 0;
        real[inst->magnLen - 1] = winData[1];
        magn[inst->magnLen - 1] = (float)(fabs(real[inst->magnLen - 1]) + 1.0f);
        signalEnergy = (float)(real[0] * real[0]) + (float)(real[inst->magnLen - 1]
                * real[inst->magnLen - 1]);
        sumMagn = magn[0] + magn[inst->magnLen - 1];
        if (inst->blockInd < END_STARTUP_SHORT)
        {
            inst->initMagnEst[0] += magn[0];
            inst->initMagnEst[inst->magnLen - 1] += magn[inst->magnLen - 1];
            tmpFloat2 = log((float)(inst->magnLen - 1));
            sum_log_i = tmpFloat2;
            sum_log_i_square = tmpFloat2 * tmpFloat2;
            tmpFloat1 = log(magn[inst->magnLen - 1]);
            sum_log_magn = tmpFloat1;
            sum_log_i_log_magn = tmpFloat2 * tmpFloat1;
        }
        for (i = 1; i < inst->magnLen - 1; i++)
        {
            real[i] = winData[2 * i];
            imag[i] = winData[2 * i + 1];
            // magnitude spectrum
            fTmp = real[i] * real[i];
            fTmp += imag[i] * imag[i];
            signalEnergy += fTmp;
            magn[i] = ((float)sqrt(fTmp)) + 1.0f;
            sumMagn += magn[i];
            if (inst->blockInd < END_STARTUP_SHORT)
            {
                inst->initMagnEst[i] += magn[i];
                if (i >= kStartBand)
                {
                    tmpFloat2 = log((float)i);
                    sum_log_i += tmpFloat2;
                    sum_log_i_square += tmpFloat2 * tmpFloat2;
                    tmpFloat1 = log(magn[i]);
                    sum_log_magn += tmpFloat1;
                    sum_log_i_log_magn += tmpFloat2 * tmpFloat1;
                }
            }
        }
        signalEnergy = signalEnergy / ((float)inst->magnLen);
        inst->signalEnergy = signalEnergy;
        inst->sumMagn = sumMagn;

        //compute spectral flatness on input spectrum
        WebRtcNs_ComputeSpectralFlatness(inst, magn);
        // quantile noise estimate
        WebRtcNs_NoiseEstimation(inst, magn, noise);
        //compute simplified noise model during startup
        if (inst->blockInd < END_STARTUP_SHORT)
        {
            // Estimate White noise
            inst->whiteNoiseLevel += sumMagn / ((float)inst->magnLen) * inst->overdrive;
            // Estimate Pink noise parameters
            tmpFloat1 = sum_log_i_square * ((float)(inst->magnLen - kStartBand));
            tmpFloat1 -= (sum_log_i * sum_log_i);
            tmpFloat2 = (sum_log_i_square * sum_log_magn - sum_log_i * sum_log_i_log_magn);
            tmpFloat3 = tmpFloat2 / tmpFloat1;
            // Constrain the estimated spectrum to be positive
            if (tmpFloat3 < 0.0f)
            {
                tmpFloat3 = 0.0f;
            }
            inst->pinkNoiseNumerator += tmpFloat3;
            tmpFloat2 = (sum_log_i * sum_log_magn);
            tmpFloat2 -= ((float)(inst->magnLen - kStartBand)) * sum_log_i_log_magn;
            tmpFloat3 = tmpFloat2 / tmpFloat1;
            // Constrain the pink noise power to be in the interval [0, 1];
            if (tmpFloat3 < 0.0f)
            {
                tmpFloat3 = 0.0f;
            }
            if (tmpFloat3 > 1.0f)
            {
                tmpFloat3 = 1.0f;
            }
            inst->pinkNoiseExp += tmpFloat3;

            // Calculate frequency independent parts of parametric noise estimate.
            if (inst->pinkNoiseExp == 0.0f)
            {
                // Use white noise estimate
                parametric_noise = inst->whiteNoiseLevel;
            }
            else
            {
                // Use pink noise estimate
                parametric_num = exp(inst->pinkNoiseNumerator / (float)(inst->blockInd + 1));
                parametric_num *= (float)(inst->blockInd + 1);
                parametric_exp = inst->pinkNoiseExp / (float)(inst->blockInd + 1);
                parametric_noise = parametric_num / pow((float)kStartBand, parametric_exp);
            }
            for (i = 0; i < inst->magnLen; i++)
            {
                // Estimate the background noise using the white and pink noise parameters
                if ((inst->pinkNoiseExp > 0.0f) && (i >= kStartBand))
                {
                    // Use pink noise estimate
                    parametric_noise = parametric_num / pow((float)i, parametric_exp);
                }
                theFilterTmp[i] = (inst->initMagnEst[i] - inst->overdrive * parametric_noise);
                theFilterTmp[i] /= (inst->initMagnEst[i] + (float)0.0001);
                // Weight quantile noise with modeled noise
                noise[i] *= (inst->blockInd);
                tmpFloat2 = parametric_noise * (END_STARTUP_SHORT - inst->blockInd);
                noise[i] += (tmpFloat2 / (float)(inst->blockInd + 1));
                noise[i] /= END_STARTUP_SHORT;
            }
        }
        //compute average signal during END_STARTUP_LONG time:
        // used to normalize spectral difference measure
        if (inst->blockInd < END_STARTUP_LONG)
        {
            inst->featureData[5] *= inst->blockInd;
            inst->featureData[5] += signalEnergy;
            inst->featureData[5] /= (inst->blockInd + 1);
        }

#ifdef PROCESS_FLOW_0
        if (inst->blockInd > END_STARTUP_LONG)
        {
            //option: average the quantile noise: for check with AEC2
            for (i = 0; i < inst->magnLen; i++)
            {
                noise[i] = (float)0.6 * inst->noisePrev[i] + (float)0.4 * noise[i];
            }
            for (i = 0; i < inst->magnLen; i++)
            {
                // Wiener with over sub-substraction:
                theFilter[i] = (magn[i] - inst->overdrive * noise[i]) / (magn[i] + (float)0.0001);
            }
        }
#else
        //start processing at frames == converged+1
            //
        // STEP 1: compute  prior and post snr based on quantile noise est
        //

        // compute DD estimate of prior SNR: needed for new method
        for (i = 0; i < inst->magnLen; i++)
        {
            // post snr
            snrLocPost[i] = (float)0.0;
            if (magn[i] > noise[i])
            {
                snrLocPost[i] = magn[i] / (noise[i] + (float)0.0001) - (float)1.0;
            }
            // previous post snr
            // previous estimate: based on previous frame with gain filter
            previousEstimateStsa[i] = inst->magnPrev[i] / (inst->noisePrev[i] + (float)0.0001)
                    * (inst->smooth[i]);
            // DD estimate is sum of two terms: current estimate and previous estimate
            // directed decision update of snrPrior
            snrLocPrior[i] = DD_PR_SNR * previousEstimateStsa[i] + ((float)1.0 - DD_PR_SNR)
                    * snrLocPost[i];
            // post and prior snr needed for step 2
        } // end of loop over freqs
#ifdef PROCESS_FLOW_1
        for (i = 0; i < inst->magnLen; i++)
        {
            // gain filter
            tmpFloat1 = inst->overdrive + snrLocPrior[i];
            tmpFloat2 = (float)snrLocPrior[i] / tmpFloat1;
            theFilter[i] = (float)tmpFloat2;
        } // end of loop over freqs
#endif
        // done with step 1: dd computation of prior and post snr

        //
        //STEP 2: compute speech/noise likelihood
        //
#ifdef PROCESS_FLOW_2
        // compute difference of input spectrum with learned/estimated noise spectrum
        WebRtcNs_ComputeSpectralDifference(inst, magn);
        // compute histograms for parameter decisions (thresholds and weights for features)
        // parameters are extracted once every window time (=inst->modelUpdatePars[1])
        if (updateParsFlag >= 1)
        {
            // counter update
            inst->modelUpdatePars[3]--;
            // update histogram
            if (inst->modelUpdatePars[3] > 0)
            {
                WebRtcNs_FeatureParameterExtraction(inst, 0);
            }
            // compute model parameters
            if (inst->modelUpdatePars[3] == 0)
            {
                WebRtcNs_FeatureParameterExtraction(inst, 1);
                inst->modelUpdatePars[3] = inst->modelUpdatePars[1];
                // if wish to update only once, set flag to zero
                if (updateParsFlag == 1)
                {
                    inst->modelUpdatePars[0] = 0;
                }
                else
                {
                    // update every window:
                    // get normalization for spectral difference for next window estimate
                    inst->featureData[6] = inst->featureData[6]
                            / ((float)inst->modelUpdatePars[1]);
                    inst->featureData[5] = (float)0.5 * (inst->featureData[6]
                            + inst->featureData[5]);
                    inst->featureData[6] = (float)0.0;
                }
            }
        }
        // compute speech/noise probability
        WebRtcNs_SpeechNoiseProb(inst, probSpeechFinal, snrLocPrior, snrLocPost);
        // time-avg parameter for noise update
        gammaNoiseTmp = NOISE_UPDATE;
        for (i = 0; i < inst->magnLen; i++)
        {
            probSpeech = probSpeechFinal[i];
            probNonSpeech = (float)1.0 - probSpeech;
            // temporary noise update:
            // use it for speech frames if update value is less than previous
            noiseUpdateTmp = gammaNoiseTmp * inst->noisePrev[i] + ((float)1.0 - gammaNoiseTmp)
                    * (probNonSpeech * magn[i] + probSpeech * inst->noisePrev[i]);
            //
            // time-constant based on speech/noise state
            gammaNoiseOld = gammaNoiseTmp;
            gammaNoiseTmp = NOISE_UPDATE;
            // increase gamma (i.e., less noise update) for frame likely to be speech
            if (probSpeech > PROB_RANGE)
            {
                gammaNoiseTmp = SPEECH_UPDATE;
            }
            // conservative noise update
            if (probSpeech < PROB_RANGE)
            {
                inst->magnAvgPause[i] += GAMMA_PAUSE * (magn[i] - inst->magnAvgPause[i]);
            }
            // noise update
            if (gammaNoiseTmp == gammaNoiseOld)
            {
                noise[i] = noiseUpdateTmp;
            }
            else
            {
                noise[i] = gammaNoiseTmp * inst->noisePrev[i] + ((float)1.0 - gammaNoiseTmp)
                        * (probNonSpeech * magn[i] + probSpeech * inst->noisePrev[i]);
                // allow for noise update downwards:
                //  if noise update decreases the noise, it is safe, so allow it to happen
                if (noiseUpdateTmp < noise[i])
                {
                    noise[i] = noiseUpdateTmp;
                }
            }
        } // end of freq loop
        // done with step 2: noise update

        //
        // STEP 3: compute dd update of prior snr and post snr based on new noise estimate
        //
        for (i = 0; i < inst->magnLen; i++)
        {
            // post and prior snr
            currentEstimateStsa = (float)0.0;
            if (magn[i] > noise[i])
            {
                currentEstimateStsa = magn[i] / (noise[i] + (float)0.0001) - (float)1.0;
            }
            // DD estimate is sume of two terms: current estimate and previous estimate
            // directed decision update of snrPrior
            snrPrior = DD_PR_SNR * previousEstimateStsa[i] + ((float)1.0 - DD_PR_SNR)
                    * currentEstimateStsa;
            // gain filter
            tmpFloat1 = inst->overdrive + snrPrior;
            tmpFloat2 = (float)snrPrior / tmpFloat1;
            theFilter[i] = (float)tmpFloat2;
        } // end of loop over freqs
        // done with step3
#endif
#endif

        for (i = 0; i < inst->magnLen; i++)
        {
            // flooring bottom
            if (theFilter[i] < inst->denoiseBound)
            {
                theFilter[i] = inst->denoiseBound;
            }
            // flooring top
            if (theFilter[i] > (float)1.0)
            {
                theFilter[i] = 1.0;
            }
            if (inst->blockInd < END_STARTUP_SHORT)
            {
                // flooring bottom
                if (theFilterTmp[i] < inst->denoiseBound)
                {
                    theFilterTmp[i] = inst->denoiseBound;
                }
                // flooring top
                if (theFilterTmp[i] > (float)1.0)
                {
                    theFilterTmp[i] = 1.0;
                }
                // Weight the two suppression filters
                theFilter[i] *= (inst->blockInd);
                theFilterTmp[i] *= (END_STARTUP_SHORT - inst->blockInd);
                theFilter[i] += theFilterTmp[i];
                theFilter[i] /= (END_STARTUP_SHORT);
            }
            // smoothing
#ifdef PROCESS_FLOW_0
            inst->smooth[i] *= SMOOTH; // value set to 0.7 in define.h file
            inst->smooth[i] += ((float)1.0 - SMOOTH) * theFilter[i];
#else
            inst->smooth[i] = theFilter[i];
#endif
            real[i] *= inst->smooth[i];
            imag[i] *= inst->smooth[i];
        }
        // keep track of noise and magn spectrum for next frame
        for (i = 0; i < inst->magnLen; i++)
        {
            inst->noisePrev[i] = noise[i];
            inst->magnPrev[i] = magn[i];
        }
        // back to time domain
        winData[0] = real[0];
        winData[1] = real[inst->magnLen - 1];
        for (i = 1; i < inst->magnLen - 1; i++)
        {
            winData[2 * i] = real[i];
            winData[2 * i + 1] = imag[i];
        }
        rdft(inst->anaLen, -1, winData, inst->ip, inst->wfft);

        for (i = 0; i < inst->anaLen; i++)
        {
            real[i] = 2.0f * winData[i] / inst->anaLen; // fft scaling
        }

        //scale factor: only do it after END_STARTUP_LONG time
        factor = (float)1.0;
        if (inst->gainmap == 1 && inst->blockInd > END_STARTUP_LONG)
        {
            factor1 = (float)1.0;
            factor2 = (float)1.0;

            energy2 = 0.0;
            for (i = 0; i < inst->anaLen;i++)
            {
                energy2 += (float)real[i] * (float)real[i];
            }
            gain = (float)sqrt(energy2 / (energy1 + (float)1.0));

#ifdef PROCESS_FLOW_2
            // scaling for new version
            if (gain > B_LIM)
            {
                factor1 = (float)1.0 + (float)1.3 * (gain - B_LIM);
                if (gain * factor1 > (float)1.0)
                {
                    factor1 = (float)1.0 / gain;
                }
            }
            if (gain < B_LIM)
            {
                //don't reduce scale too much for pause regions:
                // attenuation here should be controlled by flooring
                if (gain <= inst->denoiseBound)
                {
                    gain = inst->denoiseBound;
                }
                factor2 = (float)1.0 - (float)0.3 * (B_LIM - gain);
            }
            //combine both scales with speech/noise prob:
            // note prior (priorSpeechProb) is not frequency dependent
            factor = inst->priorSpeechProb * factor1 + ((float)1.0 - inst->priorSpeechProb)
                    * factor2;
#else
            if (gain > B_LIM)
            {
                factor = (float)1.0 + (float)1.3 * (gain - B_LIM);
            }
            else
            {
                factor = (float)1.0 + (float)2.0 * (gain - B_LIM);
            }
            if (gain * factor > (float)1.0)
            {
                factor = (float)1.0 / gain;
            }
#endif
        } // out of inst->gainmap==1

        // synthesis
        for (i = 0; i < inst->anaLen; i++)
        {
            inst->syntBuf[i] += factor * inst->window[i] * (float)real[i];
        }
        // read out fully processed segment
        for (i = inst->windShift; i < inst->blockLen + inst->windShift; i++)
        {
            fout[i - inst->windShift] = inst->syntBuf[i];
        }
        // update synthesis buffer
        memcpy(inst->syntBuf, inst->syntBuf + inst->blockLen,
               sizeof(float) * (inst->anaLen - inst->blockLen));
        memset(inst->syntBuf + inst->anaLen - inst->blockLen, 0,
               sizeof(float) * inst->blockLen);

        // out buffer
        inst->outLen = inst->blockLen - inst->blockLen10ms;
        if (inst->blockLen > inst->blockLen10ms)
        {
            for (i = 0; i < inst->outLen; i++)
            {
                inst->outBuf[i] = fout[i + inst->blockLen10ms];
            }
        }
    } // end of if out.len==0
    else
    {
        for (i = 0; i < inst->blockLen10ms; i++)
        {
            fout[i] = inst->outBuf[i];
        }
        memcpy(inst->outBuf, inst->outBuf + inst->blockLen10ms,
               sizeof(float) * (inst->outLen - inst->blockLen10ms));
        memset(inst->outBuf + inst->outLen - inst->blockLen10ms, 0,
               sizeof(float) * inst->blockLen10ms);
        inst->outLen -= inst->blockLen10ms;
    }

    // convert to short
    for (i = 0; i < inst->blockLen10ms; i++)
    {
        dTmp = fout[i];
        if (dTmp < WEBRTC_SPL_WORD16_MIN)
        {
            dTmp = WEBRTC_SPL_WORD16_MIN;
        }
        else if (dTmp > WEBRTC_SPL_WORD16_MAX)
        {
            dTmp = WEBRTC_SPL_WORD16_MAX;
        }
        outFrame[i] = (short)dTmp;
    }

    // for time-domain gain of HB
    if (flagHB == 1)
    {
        for (i = 0; i < inst->magnLen; i++)
        {
            inst->speechProbHB[i] = probSpeechFinal[i];
        }
        if (inst->blockInd > END_STARTUP_LONG)
        {
            // average speech prob from low band
            // avg over second half (i.e., 4->8kHz) of freq. spectrum
            avgProbSpeechHB = 0.0;
            for (i = inst->magnLen - deltaBweHB - 1; i < inst->magnLen - 1; i++)
            {
                avgProbSpeechHB += inst->speechProbHB[i];
            }
            avgProbSpeechHB = avgProbSpeechHB / ((float)deltaBweHB);
            // average filter gain from low band
            // average over second half (i.e., 4->8kHz) of freq. spectrum
            avgFilterGainHB = 0.0;
            for (i = inst->magnLen - deltaGainHB - 1; i < inst->magnLen - 1; i++)
            {
                avgFilterGainHB += inst->smooth[i];
            }
            avgFilterGainHB = avgFilterGainHB / ((float)(deltaGainHB));
            avgProbSpeechHBTmp = (float)2.0 * avgProbSpeechHB - (float)1.0;
            // gain based on speech prob:
            gainModHB = (float)0.5 * ((float)1.0 + (float)tanh(gainMapParHB * avgProbSpeechHBTmp));
            //combine gain with low band gain
            gainTimeDomainHB = (float)0.5 * gainModHB + (float)0.5 * avgFilterGainHB;
            if (avgProbSpeechHB >= (float)0.5)
            {
                gainTimeDomainHB = (float)0.25 * gainModHB + (float)0.75 * avgFilterGainHB;
            }
            gainTimeDomainHB = gainTimeDomainHB * decayBweHB;
        } // end of converged
        //make sure gain is within flooring range
        // flooring bottom
        if (gainTimeDomainHB < inst->denoiseBound)
        {
            gainTimeDomainHB = inst->denoiseBound;
        }
        // flooring top
        if (gainTimeDomainHB > (float)1.0)
        {
            gainTimeDomainHB = 1.0;
        }
        //apply gain
        for (i = 0; i < inst->blockLen10ms; i++)
        {
            dTmp = gainTimeDomainHB * inst->dataBufHB[i];
            if (dTmp < WEBRTC_SPL_WORD16_MIN)
            {
                dTmp = WEBRTC_SPL_WORD16_MIN;
            }
            else if (dTmp > WEBRTC_SPL_WORD16_MAX)
            {
                dTmp = WEBRTC_SPL_WORD16_MAX;
            }
            outFrameHB[i] = (short)dTmp;
        }
    } // end of H band gain computation
    //

    return 0;
}