aboutsummaryrefslogtreecommitdiff
path: root/system_wrappers/source/rtp_to_ntp_estimator_unittest.cc
blob: 14bc6e0a89cef71c371157cfef063582c2ff151a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "system_wrappers/include/rtp_to_ntp_estimator.h"

#include <stddef.h>

#include "rtc_base/random.h"
#include "test/gtest.h"

namespace webrtc {
namespace {
const uint32_t kOneMsInNtpFrac = 4294967;
const uint32_t kOneHourInNtpSec = 60 * 60;
const uint32_t kTimestampTicksPerMs = 90;
}  // namespace

TEST(WrapAroundTests, OldRtcpWrapped_OldRtpTimestamp) {
  RtpToNtpEstimator estimator;
  bool new_sr;
  uint32_t ntp_sec = 0;
  uint32_t ntp_frac = 1;
  uint32_t timestamp = 0;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  ntp_frac += kOneMsInNtpFrac;
  timestamp -= kTimestampTicksPerMs;
  // No wraparound will be detected, since we are not allowed to wrap below 0,
  // but there will be huge rtp timestamp jump, e.g. old_timestamp = 0,
  // new_timestamp = 4294967295, which should be detected.
  EXPECT_FALSE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
}

TEST(WrapAroundTests, OldRtcpWrapped_OldRtpTimestamp_Wraparound_Detected) {
  RtpToNtpEstimator estimator;
  bool new_sr;
  uint32_t ntp_sec = 0;
  uint32_t ntp_frac = 1;
  uint32_t timestamp = 0xFFFFFFFE;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  ntp_frac += 2 * kOneMsInNtpFrac;
  timestamp += 2 * kTimestampTicksPerMs;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  ntp_frac += kOneMsInNtpFrac;
  timestamp -= kTimestampTicksPerMs;
  // Expected to fail since the older RTCP has a smaller RTP timestamp than the
  // newer (old:10, new:4294967206).
  EXPECT_FALSE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
}

TEST(WrapAroundTests, NewRtcpWrapped) {
  RtpToNtpEstimator estimator;
  bool new_sr;
  uint32_t ntp_sec = 0;
  uint32_t ntp_frac = 1;
  uint32_t timestamp = 0xFFFFFFFF;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  ntp_frac += kOneMsInNtpFrac;
  timestamp += kTimestampTicksPerMs;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  int64_t timestamp_ms = -1;
  EXPECT_TRUE(estimator.Estimate(0xFFFFFFFF, &timestamp_ms));
  // Since this RTP packet has the same timestamp as the RTCP packet constructed
  // at time 0 it should be mapped to 0 as well.
  EXPECT_EQ(0, timestamp_ms);
}

TEST(WrapAroundTests, RtpWrapped) {
  RtpToNtpEstimator estimator;
  bool new_sr;
  uint32_t ntp_sec = 0;
  uint32_t ntp_frac = 1;
  uint32_t timestamp = 0xFFFFFFFF - 2 * kTimestampTicksPerMs;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  ntp_frac += kOneMsInNtpFrac;
  timestamp += kTimestampTicksPerMs;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));

  int64_t timestamp_ms = -1;
  EXPECT_TRUE(
      estimator.Estimate(0xFFFFFFFF - 2 * kTimestampTicksPerMs, &timestamp_ms));
  // Since this RTP packet has the same timestamp as the RTCP packet constructed
  // at time 0 it should be mapped to 0 as well.
  EXPECT_EQ(0, timestamp_ms);
  // Two kTimestampTicksPerMs advanced.
  timestamp += kTimestampTicksPerMs;
  EXPECT_TRUE(estimator.Estimate(timestamp, &timestamp_ms));
  EXPECT_EQ(2, timestamp_ms);
  // Wrapped rtp.
  timestamp += kTimestampTicksPerMs;
  EXPECT_TRUE(estimator.Estimate(timestamp, &timestamp_ms));
  EXPECT_EQ(3, timestamp_ms);
}

TEST(WrapAroundTests, OldRtp_RtcpsWrapped) {
  RtpToNtpEstimator estimator;
  bool new_sr;
  uint32_t ntp_sec = 0;
  uint32_t ntp_frac = 1;
  uint32_t timestamp = 0xFFFFFFFF;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  ntp_frac += kOneMsInNtpFrac;
  timestamp += kTimestampTicksPerMs;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  timestamp -= 2 * kTimestampTicksPerMs;
  int64_t timestamp_ms = 0xFFFFFFFF;
  EXPECT_FALSE(estimator.Estimate(timestamp, &timestamp_ms));
}

TEST(WrapAroundTests, OldRtp_NewRtcpWrapped) {
  RtpToNtpEstimator estimator;
  bool new_sr;
  uint32_t ntp_sec = 0;
  uint32_t ntp_frac = 1;
  uint32_t timestamp = 0xFFFFFFFF;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  ntp_frac += kOneMsInNtpFrac;
  timestamp += kTimestampTicksPerMs;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  timestamp -= kTimestampTicksPerMs;
  int64_t timestamp_ms = -1;
  EXPECT_TRUE(estimator.Estimate(timestamp, &timestamp_ms));
  // Constructed at the same time as the first RTCP and should therefore be
  // mapped to zero.
  EXPECT_EQ(0, timestamp_ms);
}

TEST(WrapAroundTests, GracefullyHandleRtpJump) {
  RtpToNtpEstimator estimator;
  bool new_sr;
  uint32_t ntp_sec = 0;
  uint32_t ntp_frac = 1;
  uint32_t timestamp = 0;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  ntp_frac += kOneMsInNtpFrac;
  timestamp += kTimestampTicksPerMs;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  ntp_frac += kOneMsInNtpFrac;
  timestamp -= kTimestampTicksPerMs;
  int64_t timestamp_ms = -1;
  EXPECT_TRUE(estimator.Estimate(timestamp, &timestamp_ms));
  // Constructed at the same time as the first RTCP and should therefore be
  // mapped to zero.
  EXPECT_EQ(0, timestamp_ms);

  timestamp -= 0xFFFFF;
  for (int i = 0; i < RtpToNtpEstimator::kMaxInvalidSamples - 1; ++i) {
    EXPECT_FALSE(
        estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
    ntp_frac += kOneMsInNtpFrac;
    timestamp += kTimestampTicksPerMs;
  }
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  ntp_frac += kOneMsInNtpFrac;
  timestamp += kTimestampTicksPerMs;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  ntp_frac += kOneMsInNtpFrac;
  timestamp += kTimestampTicksPerMs;

  timestamp_ms = -1;
  EXPECT_TRUE(estimator.Estimate(timestamp, &timestamp_ms));
  // 6 milliseconds has passed since the start of the test.
  EXPECT_EQ(6, timestamp_ms);
}

TEST(UpdateRtcpMeasurementTests, FailsForZeroNtp) {
  RtpToNtpEstimator estimator;
  uint32_t ntp_sec = 0;
  uint32_t ntp_frac = 0;
  uint32_t timestamp = 0x12345678;
  bool new_sr;
  EXPECT_FALSE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  EXPECT_FALSE(new_sr);
}

TEST(UpdateRtcpMeasurementTests, FailsForEqualNtp) {
  RtpToNtpEstimator estimator;
  uint32_t ntp_sec = 0;
  uint32_t ntp_frac = 699925050;
  uint32_t timestamp = 0x12345678;
  bool new_sr;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  EXPECT_TRUE(new_sr);
  // Ntp time already added, list not updated.
  ++timestamp;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  EXPECT_FALSE(new_sr);
}

TEST(UpdateRtcpMeasurementTests, FailsForOldNtp) {
  RtpToNtpEstimator estimator;
  uint32_t ntp_sec = 1;
  uint32_t ntp_frac = 699925050;
  uint32_t timestamp = 0x12345678;
  bool new_sr;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  EXPECT_TRUE(new_sr);
  // Old ntp time, list not updated.
  ntp_frac -= kOneMsInNtpFrac;
  timestamp += kTimestampTicksPerMs;
  EXPECT_FALSE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
}

TEST(UpdateRtcpMeasurementTests, FailsForTooNewNtp) {
  RtpToNtpEstimator estimator;
  uint32_t ntp_sec = 1;
  uint32_t ntp_frac = 699925050;
  uint32_t timestamp = 0x12345678;
  bool new_sr;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  EXPECT_TRUE(new_sr);
  // Ntp time from far future, list not updated.
  ntp_sec += kOneHourInNtpSec * 2;
  timestamp += kTimestampTicksPerMs * 10;
  EXPECT_FALSE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
}

TEST(UpdateRtcpMeasurementTests, FailsForEqualTimestamp) {
  RtpToNtpEstimator estimator;
  uint32_t ntp_sec = 0;
  uint32_t ntp_frac = 2;
  uint32_t timestamp = 0x12345678;
  bool new_sr;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  EXPECT_TRUE(new_sr);
  // Timestamp already added, list not updated.
  ++ntp_frac;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  EXPECT_FALSE(new_sr);
}

TEST(UpdateRtcpMeasurementTests, FailsForOldRtpTimestamp) {
  RtpToNtpEstimator estimator;
  uint32_t ntp_sec = 0;
  uint32_t ntp_frac = 2;
  uint32_t timestamp = 0x12345678;
  bool new_sr;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  EXPECT_TRUE(new_sr);
  // Old timestamp, list not updated.
  ntp_frac += kOneMsInNtpFrac;
  timestamp -= kTimestampTicksPerMs;
  EXPECT_FALSE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  EXPECT_FALSE(new_sr);
}

TEST(UpdateRtcpMeasurementTests, VerifyParameters) {
  RtpToNtpEstimator estimator;
  uint32_t ntp_sec = 1;
  uint32_t ntp_frac = 2;
  uint32_t timestamp = 0x12345678;
  bool new_sr;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  EXPECT_TRUE(new_sr);
  EXPECT_FALSE(estimator.params());
  // Add second report, parameters should be calculated.
  ntp_frac += kOneMsInNtpFrac;
  timestamp += kTimestampTicksPerMs;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  EXPECT_TRUE(estimator.params());
  EXPECT_DOUBLE_EQ(90.0, estimator.params()->frequency_khz);
  EXPECT_NE(0.0, estimator.params()->offset_ms);
}

TEST(RtpToNtpTests, FailsForNoParameters) {
  RtpToNtpEstimator estimator;
  uint32_t ntp_sec = 1;
  uint32_t ntp_frac = 2;
  uint32_t timestamp = 0x12345678;
  bool new_sr;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  EXPECT_TRUE(new_sr);
  // Parameters are not calculated, conversion of RTP to NTP time should fail.
  EXPECT_FALSE(estimator.params());
  int64_t timestamp_ms = -1;
  EXPECT_FALSE(estimator.Estimate(timestamp, &timestamp_ms));
}

TEST(RtpToNtpTests, AveragesErrorOut) {
  RtpToNtpEstimator estimator;
  uint32_t ntp_sec = 1;
  uint32_t ntp_frac = 90000000;  // More than 1 ms.
  uint32_t timestamp = 0x12345678;
  const int kNtpSecStep = 1;  // 1 second.
  const int kRtpTicksPerMs = 90;
  const int kRtpStep = kRtpTicksPerMs * 1000;
  bool new_sr;
  EXPECT_TRUE(
      estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
  EXPECT_TRUE(new_sr);

  Random rand(1123536L);
  for (size_t i = 0; i < 1000; i++) {
    // Advance both timestamps by exactly 1 second.
    ntp_sec += kNtpSecStep;
    timestamp += kRtpStep;
    // Add upto 1ms of errors to NTP and RTP timestamps passed to estimator.
    EXPECT_TRUE(estimator.UpdateMeasurements(
        ntp_sec,
        ntp_frac + rand.Rand(-static_cast<int>(kOneMsInNtpFrac),
                             static_cast<int>(kOneMsInNtpFrac)),
        timestamp + rand.Rand(-kRtpTicksPerMs, kRtpTicksPerMs), &new_sr));
    EXPECT_TRUE(new_sr);

    int64_t estimated_ntp_ms;
    EXPECT_TRUE(estimator.Estimate(timestamp, &estimated_ntp_ms));
    // Allow upto 2 ms of error.
    EXPECT_NEAR(NtpTime(ntp_sec, ntp_frac).ToMs(), estimated_ntp_ms, 2);
  }
}

}  // namespace webrtc