aboutsummaryrefslogtreecommitdiff
path: root/talk/media/base/videoadapter.cc
blob: edeed637221b04ebd6cf6fc74a36b9338c4c7235 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
/*
 * libjingle
 * Copyright 2010 Google Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  1. Redistributions of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *  2. Redistributions in binary form must reproduce the above copyright notice,
 *     this list of conditions and the following disclaimer in the documentation
 *     and/or other materials provided with the distribution.
 *  3. The name of the author may not be used to endorse or promote products
 *     derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "talk/media/base/videoadapter.h"

#include <limits.h>  // For INT_MAX
#include <algorithm>

#include "talk/media/base/constants.h"
#include "talk/media/base/videocommon.h"
#include "talk/media/base/videoframe.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/timeutils.h"

namespace cricket {

// TODO(fbarchard): Make downgrades settable
static const int kMaxCpuDowngrades = 2;  // Downgrade at most 2 times for CPU.
// The number of cpu samples to require before adapting. This value depends on
// the cpu monitor sampling frequency being 2000ms.
static const int kCpuLoadMinSamples = 3;
// The amount of weight to give to each new cpu load sample. The lower the
// value, the slower we'll adapt to changing cpu conditions.
static const float kCpuLoadWeightCoefficient = 0.4f;
// The seed value for the cpu load moving average.
static const float kCpuLoadInitialAverage = 0.5f;

// Desktop needs 1/8 scale for HD (1280 x 720) to QQVGA (160 x 90)
static const float kScaleFactors[] = {
  1.f / 1.f,   // Full size.
  3.f / 4.f,   // 3/4 scale.
  1.f / 2.f,   // 1/2 scale.
  3.f / 8.f,   // 3/8 scale.
  1.f / 4.f,   // 1/4 scale.
  3.f / 16.f,  // 3/16 scale.
  1.f / 8.f,   // 1/8 scale.
  0.f  // End of table.
};

// TODO(fbarchard): Use this table (optionally) for CPU and GD as well.
static const float kViewScaleFactors[] = {
  1.f / 1.f,   // Full size.
  3.f / 4.f,   // 3/4 scale.
  2.f / 3.f,   // 2/3 scale.  // Allow 1080p to 720p.
  1.f / 2.f,   // 1/2 scale.
  3.f / 8.f,   // 3/8 scale.
  1.f / 3.f,   // 1/3 scale.  // Allow 1080p to 360p.
  1.f / 4.f,   // 1/4 scale.
  3.f / 16.f,  // 3/16 scale.
  1.f / 8.f,   // 1/8 scale.
  0.f  // End of table.
};

const float* VideoAdapter::GetViewScaleFactors() const {
  return scale_third_ ? kViewScaleFactors : kScaleFactors;
}

// For resolutions that would scale down a little instead of up a little,
// bias toward scaling up a little.  This will tend to choose 3/4 scale instead
// of 2/3 scale, when the 2/3 is not an exact match.
static const float kUpBias = -0.9f;
// Find the scale factor that, when applied to width and height, is closest
// to num_pixels.
float VideoAdapter::FindScale(const float* scale_factors,
                              const float upbias,
                              int width, int height,
                              int target_num_pixels) {
  const float kMinNumPixels = 160 * 90;
  if (!target_num_pixels) {
    return 0.f;
  }
  float best_distance = static_cast<float>(INT_MAX);
  float best_scale = 1.f;  // Default to unscaled if nothing matches.
  float pixels = static_cast<float>(width * height);
  for (int i = 0; ; ++i) {
    float scale = scale_factors[i];
    float test_num_pixels = pixels * scale * scale;
    // Do not consider scale factors that produce too small images.
    // Scale factor of 0 at end of table will also exit here.
    if (test_num_pixels < kMinNumPixels) {
      break;
    }
    float diff = target_num_pixels - test_num_pixels;
    // If resolution is higher than desired, bias the difference based on
    // preference for slightly larger for nearest, or avoid completely if
    // looking for lower resolutions only.
    if (diff < 0) {
      diff = diff * kUpBias;
    }
    if (diff < best_distance) {
      best_distance = diff;
      best_scale = scale;
      if (best_distance == 0) {  // Found exact match.
        break;
      }
    }
  }
  return best_scale;
}

// Find the closest scale factor.
float VideoAdapter::FindClosestScale(int width, int height,
                                         int target_num_pixels) {
  return FindScale(kScaleFactors, kUpBias,
                   width, height, target_num_pixels);
}

// Find the closest view scale factor.
float VideoAdapter::FindClosestViewScale(int width, int height,
                                         int target_num_pixels) {
  return FindScale(GetViewScaleFactors(), kUpBias,
                   width, height, target_num_pixels);
}

// Finds the scale factor that, when applied to width and height, produces
// fewer than num_pixels.
static const float kUpAvoidBias = -1000000000.f;
float VideoAdapter::FindLowerScale(int width, int height,
                                   int target_num_pixels) {
  return FindScale(GetViewScaleFactors(), kUpAvoidBias,
                   width, height, target_num_pixels);
}

// There are several frame sizes used by Adapter.  This explains them
// input_format - set once by server to frame size expected from the camera.
//   The input frame size is also updated in AdaptFrameResolution.
// output_format - size that output would like to be.  Includes framerate.
//   The output frame size is also updated in AdaptFrameResolution.
// output_num_pixels - size that output should be constrained to.  Used to
//   compute output_format from in_frame.
// in_frame - actual camera captured frame size, which is typically the same
//   as input_format.  This can also be rotated or cropped for aspect ratio.
// out_frame - actual frame output by adapter.  Should be a direct scale of
//   in_frame maintaining rotation and aspect ratio.
// OnOutputFormatRequest - server requests you send this resolution based on
//   view requests.
// OnEncoderResolutionRequest - encoder requests you send this resolution based
//   on bandwidth
// OnCpuLoadUpdated - cpu monitor requests you send this resolution based on
//   cpu load.

///////////////////////////////////////////////////////////////////////
// Implementation of VideoAdapter
VideoAdapter::VideoAdapter()
    : output_num_pixels_(INT_MAX),
      scale_third_(false),
      frames_in_(0),
      frames_out_(0),
      frames_scaled_(0),
      adaption_changes_(0),
      previous_width_(0),
      previous_height_(0),
      interval_next_frame_(0) {
}

VideoAdapter::~VideoAdapter() {
}

void VideoAdapter::SetInputFormat(const VideoFormat& format) {
  rtc::CritScope cs(&critical_section_);
  int64_t old_input_interval = input_format_.interval;
  input_format_ = format;
  output_format_.interval =
      std::max(output_format_.interval, input_format_.interval);
  if (old_input_interval != input_format_.interval) {
    LOG(LS_INFO) << "VAdapt input interval changed from "
      << old_input_interval << " to " << input_format_.interval;
  }
}

void CoordinatedVideoAdapter::SetInputFormat(const VideoFormat& format) {
  int previous_width = input_format().width;
  int previous_height = input_format().height;
  bool is_resolution_change = previous_width > 0 && format.width > 0 &&
                              (previous_width != format.width ||
                               previous_height != format.height);
  VideoAdapter::SetInputFormat(format);
  if (is_resolution_change) {
    int width, height;
    // Trigger the adaptation logic again, to potentially reset the adaptation
    // state for things like view requests that may not longer be capping
    // output (or may now cap output).
    AdaptToMinimumFormat(&width, &height);
    LOG(LS_INFO) << "VAdapt Input Resolution Change: "
                 << "Previous input resolution: "
                 << previous_width << "x" << previous_height
                 << " New input resolution: "
                 << format.width << "x" << format.height
                 << " New output resolution: "
                 << width << "x" << height;
  }
}

void CoordinatedVideoAdapter::set_cpu_smoothing(bool enable) {
  LOG(LS_INFO) << "CPU smoothing is now "
               << (enable ? "enabled" : "disabled");
  cpu_smoothing_ = enable;
}

void VideoAdapter::SetOutputFormat(const VideoFormat& format) {
  rtc::CritScope cs(&critical_section_);
  int64_t old_output_interval = output_format_.interval;
  output_format_ = format;
  output_num_pixels_ = output_format_.width * output_format_.height;
  output_format_.interval =
      std::max(output_format_.interval, input_format_.interval);
  if (old_output_interval != output_format_.interval) {
    LOG(LS_INFO) << "VAdapt output interval changed from "
      << old_output_interval << " to " << output_format_.interval;
  }
}

const VideoFormat& VideoAdapter::input_format() {
  rtc::CritScope cs(&critical_section_);
  return input_format_;
}

bool VideoAdapter::drops_all_frames() const {
  return output_num_pixels_ == 0;
}

const VideoFormat& VideoAdapter::output_format() {
  rtc::CritScope cs(&critical_section_);
  return output_format_;
}

// Constrain output resolution to this many pixels overall
void VideoAdapter::SetOutputNumPixels(int num_pixels) {
  output_num_pixels_ = num_pixels;
}

int VideoAdapter::GetOutputNumPixels() const {
  return output_num_pixels_;
}

VideoFormat VideoAdapter::AdaptFrameResolution(int in_width, int in_height) {
  rtc::CritScope cs(&critical_section_);
  ++frames_in_;

  SetInputFormat(VideoFormat(
      in_width, in_height, input_format_.interval, input_format_.fourcc));

  // Drop the input frame if necessary.
  bool should_drop = false;
  if (!output_num_pixels_) {
    // Drop all frames as the output format is 0x0.
    should_drop = true;
  } else {
    // Drop some frames based on input fps and output fps.
    // Normally output fps is less than input fps.
    // TODO(fbarchard): Consider adjusting interval to reflect the adjusted
    // interval between frames after dropping some frames.
    interval_next_frame_ += input_format_.interval;
    if (output_format_.interval > 0) {
      if (interval_next_frame_ >= output_format_.interval) {
        interval_next_frame_ %= output_format_.interval;
      } else {
        should_drop = true;
      }
    }
  }
  if (should_drop) {
    // Show VAdapt log every 90 frames dropped. (3 seconds)
    if ((frames_in_ - frames_out_) % 90 == 0) {
      // TODO(fbarchard): Reduce to LS_VERBOSE when adapter info is not needed
      // in default calls.
      LOG(LS_INFO) << "VAdapt Drop Frame: scaled " << frames_scaled_
                   << " / out " << frames_out_
                   << " / in " << frames_in_
                   << " Changes: " << adaption_changes_
                   << " Input: " << in_width
                   << "x" << in_height
                   << " i" << input_format_.interval
                   << " Output: i" << output_format_.interval;
    }

    return VideoFormat();  // Drop frame.
  }

  const float scale = VideoAdapter::FindClosestViewScale(
      in_width, in_height, output_num_pixels_);
  const int output_width = static_cast<int>(in_width * scale + .5f);
  const int output_height = static_cast<int>(in_height * scale + .5f);

  ++frames_out_;
  if (scale != 1)
    ++frames_scaled_;
  // Show VAdapt log every 90 frames output. (3 seconds)
  // TODO(fbarchard): Consider GetLogSeverity() to change interval to less
  // for LS_VERBOSE and more for LS_INFO.
  bool show = (frames_out_) % 90 == 0;

  // TODO(fbarchard): LOG the previous output resolution and track input
  // resolution changes as well.  Consider dropping the statistics into their
  // own class which could be queried publically.
  bool changed = false;
  if (previous_width_ && (previous_width_ != output_width ||
                          previous_height_ != output_height)) {
    show = true;
    ++adaption_changes_;
    changed = true;
  }
  if (show) {
    // TODO(fbarchard): Reduce to LS_VERBOSE when adapter info is not needed
    // in default calls.
    LOG(LS_INFO) << "VAdapt Frame: scaled " << frames_scaled_
                 << " / out " << frames_out_
                 << " / in " << frames_in_
                 << " Changes: " << adaption_changes_
                 << " Input: " << in_width
                 << "x" << in_height
                 << " i" << input_format_.interval
                 << " Scale: " << scale
                 << " Output: " << output_width
                 << "x" << output_height
                 << " i" << output_format_.interval
                 << " Changed: " << (changed ? "true" : "false");
  }

  output_format_.width = output_width;
  output_format_.height = output_height;
  previous_width_ = output_width;
  previous_height_ = output_height;

  return output_format_;
}

void VideoAdapter::set_scale_third(bool enable) {
  LOG(LS_INFO) << "Video Adapter third scaling is now "
               << (enable ? "enabled" : "disabled");
  scale_third_ = enable;
}

///////////////////////////////////////////////////////////////////////
// Implementation of CoordinatedVideoAdapter
CoordinatedVideoAdapter::CoordinatedVideoAdapter()
    : cpu_adaptation_(true),
      cpu_smoothing_(false),
      gd_adaptation_(true),
      view_adaptation_(true),
      view_switch_(false),
      cpu_downgrade_count_(0),
      cpu_load_min_samples_(kCpuLoadMinSamples),
      cpu_load_num_samples_(0),
      high_system_threshold_(kHighSystemCpuThreshold),
      low_system_threshold_(kLowSystemCpuThreshold),
      process_threshold_(kProcessCpuThreshold),
      view_desired_num_pixels_(INT_MAX),
      view_desired_interval_(0),
      encoder_desired_num_pixels_(INT_MAX),
      cpu_desired_num_pixels_(INT_MAX),
      adapt_reason_(ADAPTREASON_NONE),
      system_load_average_(kCpuLoadInitialAverage) {
}

// Helper function to UPGRADE or DOWNGRADE a number of pixels
void CoordinatedVideoAdapter::StepPixelCount(
    CoordinatedVideoAdapter::AdaptRequest request,
    int* num_pixels) {
  switch (request) {
    case CoordinatedVideoAdapter::DOWNGRADE:
      *num_pixels /= 2;
      break;

    case CoordinatedVideoAdapter::UPGRADE:
      *num_pixels *= 2;
      break;

    default:  // No change in pixel count
      break;
  }
  return;
}

// Find the adaptation request of the cpu based on the load. Return UPGRADE if
// the load is low, DOWNGRADE if the load is high, and KEEP otherwise.
CoordinatedVideoAdapter::AdaptRequest CoordinatedVideoAdapter::FindCpuRequest(
    int current_cpus, int max_cpus,
    float process_load, float system_load) {
  // Downgrade if system is high and plugin is at least more than midrange.
  if (system_load >= high_system_threshold_ * max_cpus &&
      process_load >= process_threshold_ * current_cpus) {
    return CoordinatedVideoAdapter::DOWNGRADE;
  // Upgrade if system is low.
  } else if (system_load < low_system_threshold_ * max_cpus) {
    return CoordinatedVideoAdapter::UPGRADE;
  }
  return CoordinatedVideoAdapter::KEEP;
}

// A remote view request for a new resolution.
void CoordinatedVideoAdapter::OnOutputFormatRequest(const VideoFormat& format) {
  rtc::CritScope cs(&request_critical_section_);
  if (!view_adaptation_) {
    return;
  }
  // Set output for initial aspect ratio in mediachannel unittests.
  int old_num_pixels = GetOutputNumPixels();
  SetOutputFormat(format);
  SetOutputNumPixels(old_num_pixels);
  view_desired_num_pixels_ = format.width * format.height;
  view_desired_interval_ = format.interval;
  int new_width, new_height;
  bool changed = AdaptToMinimumFormat(&new_width, &new_height);
  LOG(LS_INFO) << "VAdapt View Request: "
               << format.width << "x" << format.height
               << " Pixels: " << view_desired_num_pixels_
               << " Changed: " << (changed ? "true" : "false")
               << " To: " << new_width << "x" << new_height;
}

void CoordinatedVideoAdapter::set_cpu_load_min_samples(
    int cpu_load_min_samples) {
  if (cpu_load_min_samples_ != cpu_load_min_samples) {
    LOG(LS_INFO) << "VAdapt Change Cpu Adapt Min Samples from: "
                 << cpu_load_min_samples_ << " to "
                 << cpu_load_min_samples;
    cpu_load_min_samples_ = cpu_load_min_samples;
  }
}

void CoordinatedVideoAdapter::set_high_system_threshold(
    float high_system_threshold) {
  ASSERT(high_system_threshold <= 1.0f);
  ASSERT(high_system_threshold >= 0.0f);
  if (high_system_threshold_ != high_system_threshold) {
    LOG(LS_INFO) << "VAdapt Change High System Threshold from: "
                 << high_system_threshold_ << " to " << high_system_threshold;
    high_system_threshold_ = high_system_threshold;
  }
}

void CoordinatedVideoAdapter::set_low_system_threshold(
    float low_system_threshold) {
  ASSERT(low_system_threshold <= 1.0f);
  ASSERT(low_system_threshold >= 0.0f);
  if (low_system_threshold_ != low_system_threshold) {
    LOG(LS_INFO) << "VAdapt Change Low System Threshold from: "
                 << low_system_threshold_ << " to " << low_system_threshold;
    low_system_threshold_ = low_system_threshold;
  }
}

void CoordinatedVideoAdapter::set_process_threshold(float process_threshold) {
  ASSERT(process_threshold <= 1.0f);
  ASSERT(process_threshold >= 0.0f);
  if (process_threshold_ != process_threshold) {
    LOG(LS_INFO) << "VAdapt Change High Process Threshold from: "
                 << process_threshold_ << " to " << process_threshold;
    process_threshold_ = process_threshold;
  }
}

// A Bandwidth GD request for new resolution
void CoordinatedVideoAdapter::OnEncoderResolutionRequest(
    int width, int height, AdaptRequest request) {
  rtc::CritScope cs(&request_critical_section_);
  if (!gd_adaptation_) {
    return;
  }
  int old_encoder_desired_num_pixels = encoder_desired_num_pixels_;
  if (KEEP != request) {
    int new_encoder_desired_num_pixels = width * height;
    int old_num_pixels = GetOutputNumPixels();
    if (new_encoder_desired_num_pixels != old_num_pixels) {
      LOG(LS_VERBOSE) << "VAdapt GD resolution stale.  Ignored";
    } else {
      // Update the encoder desired format based on the request.
      encoder_desired_num_pixels_ = new_encoder_desired_num_pixels;
      StepPixelCount(request, &encoder_desired_num_pixels_);
    }
  }
  int new_width, new_height;
  bool changed = AdaptToMinimumFormat(&new_width, &new_height);

  // Ignore up or keep if no change.
  if (DOWNGRADE != request && view_switch_ && !changed) {
    encoder_desired_num_pixels_ = old_encoder_desired_num_pixels;
    LOG(LS_VERBOSE) << "VAdapt ignoring GD request.";
  }

  LOG(LS_INFO) << "VAdapt GD Request: "
               << (DOWNGRADE == request ? "down" :
                   (UPGRADE == request ? "up" : "keep"))
               << " From: " << width << "x" << height
               << " Pixels: " << encoder_desired_num_pixels_
               << " Changed: " << (changed ? "true" : "false")
               << " To: " << new_width << "x" << new_height;
}

// A Bandwidth GD request for new resolution
void CoordinatedVideoAdapter::OnCpuResolutionRequest(AdaptRequest request) {
  rtc::CritScope cs(&request_critical_section_);
  if (!cpu_adaptation_) {
    return;
  }
  // Update how many times we have downgraded due to the cpu load.
  switch (request) {
    case DOWNGRADE:
      // Ignore downgrades if we have downgraded the maximum times.
      if (cpu_downgrade_count_ < kMaxCpuDowngrades) {
        ++cpu_downgrade_count_;
      } else {
        LOG(LS_VERBOSE) << "VAdapt CPU load high but do not downgrade "
                           "because maximum downgrades reached";
        SignalCpuAdaptationUnable();
      }
      break;
    case UPGRADE:
      if (cpu_downgrade_count_ > 0) {
        bool is_min = IsMinimumFormat(cpu_desired_num_pixels_);
        if (is_min) {
          --cpu_downgrade_count_;
        } else {
          LOG(LS_VERBOSE) << "VAdapt CPU load low but do not upgrade "
                             "because cpu is not limiting resolution";
        }
      } else {
        LOG(LS_VERBOSE) << "VAdapt CPU load low but do not upgrade "
                           "because minimum downgrades reached";
      }
      break;
    case KEEP:
    default:
      break;
  }
  if (KEEP != request) {
    // TODO(fbarchard): compute stepping up/down from OutputNumPixels but
    // clamp to inputpixels / 4 (2 steps)
    cpu_desired_num_pixels_ =  cpu_downgrade_count_ == 0 ? INT_MAX :
        static_cast<int>(input_format().width * input_format().height >>
                         cpu_downgrade_count_);
  }
  int new_width, new_height;
  bool changed = AdaptToMinimumFormat(&new_width, &new_height);
  LOG(LS_INFO) << "VAdapt CPU Request: "
               << (DOWNGRADE == request ? "down" :
                   (UPGRADE == request ? "up" : "keep"))
               << " Steps: " << cpu_downgrade_count_
               << " Changed: " << (changed ? "true" : "false")
               << " To: " << new_width << "x" << new_height;
}

// A CPU request for new resolution
// TODO(fbarchard): Move outside adapter.
void CoordinatedVideoAdapter::OnCpuLoadUpdated(
    int current_cpus, int max_cpus, float process_load, float system_load) {
  rtc::CritScope cs(&request_critical_section_);
  if (!cpu_adaptation_) {
    return;
  }
  // Update the moving average of system load. Even if we aren't smoothing,
  // we'll still calculate this information, in case smoothing is later enabled.
  system_load_average_ = kCpuLoadWeightCoefficient * system_load +
      (1.0f - kCpuLoadWeightCoefficient) * system_load_average_;
  ++cpu_load_num_samples_;
  if (cpu_smoothing_) {
    system_load = system_load_average_;
  }
  AdaptRequest request = FindCpuRequest(current_cpus, max_cpus,
                                        process_load, system_load);
  // Make sure we're not adapting too quickly.
  if (request != KEEP) {
    if (cpu_load_num_samples_ < cpu_load_min_samples_) {
      LOG(LS_VERBOSE) << "VAdapt CPU load high/low but do not adapt until "
                      << (cpu_load_min_samples_ - cpu_load_num_samples_)
                      << " more samples";
      request = KEEP;
    }
  }

  OnCpuResolutionRequest(request);
}

// Called by cpu adapter on up requests.
bool CoordinatedVideoAdapter::IsMinimumFormat(int pixels) {
  // Find closest scale factor that matches input resolution to min_num_pixels
  // and set that for output resolution.  This is not needed for VideoAdapter,
  // but provides feedback to unittests and users on expected resolution.
  // Actual resolution is based on input frame.
  VideoFormat new_output = output_format();
  VideoFormat input = input_format();
  if (input_format().IsSize0x0()) {
    input = new_output;
  }
  float scale = 1.0f;
  if (!input.IsSize0x0()) {
    scale = FindClosestScale(input.width,
                             input.height,
                             pixels);
  }
  new_output.width = static_cast<int>(input.width * scale + .5f);
  new_output.height = static_cast<int>(input.height * scale + .5f);
  int new_pixels = new_output.width * new_output.height;
  int num_pixels = GetOutputNumPixels();
  return new_pixels <= num_pixels;
}

// Called by all coordinators when there is a change.
bool CoordinatedVideoAdapter::AdaptToMinimumFormat(int* new_width,
                                                   int* new_height) {
  VideoFormat new_output = output_format();
  VideoFormat input = input_format();
  if (input_format().IsSize0x0()) {
    input = new_output;
  }
  int old_num_pixels = GetOutputNumPixels();
  int min_num_pixels = INT_MAX;
  adapt_reason_ = ADAPTREASON_NONE;

  // Reduce resolution based on encoder bandwidth (GD).
  if (encoder_desired_num_pixels_ &&
      (encoder_desired_num_pixels_ < min_num_pixels)) {
    adapt_reason_ |= ADAPTREASON_BANDWIDTH;
    min_num_pixels = encoder_desired_num_pixels_;
  }
  // Reduce resolution based on CPU.
  if (cpu_adaptation_ && cpu_desired_num_pixels_ &&
      (cpu_desired_num_pixels_ <= min_num_pixels)) {
    if (cpu_desired_num_pixels_ < min_num_pixels) {
      adapt_reason_ = ADAPTREASON_CPU;
    } else {
      adapt_reason_ |= ADAPTREASON_CPU;
    }
    min_num_pixels = cpu_desired_num_pixels_;
  }
  // Round resolution for GD or CPU to allow 1/2 to map to 9/16.
  if (!input.IsSize0x0() && min_num_pixels != INT_MAX) {
    float scale = FindClosestScale(input.width, input.height, min_num_pixels);
    min_num_pixels = static_cast<int>(input.width * scale + .5f) *
        static_cast<int>(input.height * scale + .5f);
  }
  // Reduce resolution based on View Request.
  if (view_desired_num_pixels_ <= min_num_pixels) {
    if (view_desired_num_pixels_ < min_num_pixels) {
      adapt_reason_ = ADAPTREASON_VIEW;
    } else {
      adapt_reason_ |= ADAPTREASON_VIEW;
    }
    min_num_pixels = view_desired_num_pixels_;
  }
  // Snap to a scale factor.
  float scale = 1.0f;
  if (!input.IsSize0x0()) {
    scale = FindLowerScale(input.width, input.height, min_num_pixels);
    min_num_pixels = static_cast<int>(input.width * scale + .5f) *
        static_cast<int>(input.height * scale + .5f);
  }
  if (scale == 1.0f) {
    adapt_reason_ = ADAPTREASON_NONE;
  }
  *new_width = new_output.width = static_cast<int>(input.width * scale + .5f);
  *new_height = new_output.height = static_cast<int>(input.height * scale +
                                                     .5f);
  SetOutputNumPixels(min_num_pixels);

  new_output.interval = view_desired_interval_;
  SetOutputFormat(new_output);
  int new_num_pixels = GetOutputNumPixels();
  bool changed = new_num_pixels != old_num_pixels;

  static const char* kReasons[8] = {
    "None",
    "CPU",
    "BANDWIDTH",
    "CPU+BANDWIDTH",
    "VIEW",
    "CPU+VIEW",
    "BANDWIDTH+VIEW",
    "CPU+BANDWIDTH+VIEW",
  };

  LOG(LS_VERBOSE) << "VAdapt Status View: " << view_desired_num_pixels_
                  << " GD: " << encoder_desired_num_pixels_
                  << " CPU: " << cpu_desired_num_pixels_
                  << " Pixels: " << min_num_pixels
                  << " Input: " << input.width
                  << "x" << input.height
                  << " Scale: " << scale
                  << " Resolution: " << new_output.width
                  << "x" << new_output.height
                  << " Changed: " << (changed ? "true" : "false")
                  << " Reason: " << kReasons[adapt_reason_];

  if (changed) {
    // When any adaptation occurs, historic CPU load levels are no longer
    // accurate. Clear out our state so we can re-learn at the new normal.
    cpu_load_num_samples_ = 0;
    system_load_average_ = kCpuLoadInitialAverage;
  }

  return changed;
}

}  // namespace cricket