aboutsummaryrefslogtreecommitdiff
path: root/test/network/network_emulation_unittest.cc
blob: ff8539007d1ed63d570eb289e9faf967f29c8dbe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
/*
 *  Copyright 2019 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "test/network/network_emulation.h"

#include <atomic>
#include <memory>
#include <set>

#include "api/test/simulated_network.h"
#include "api/units/time_delta.h"
#include "call/simulated_network.h"
#include "rtc_base/event.h"
#include "rtc_base/gunit.h"
#include "rtc_base/synchronization/mutex.h"
#include "system_wrappers/include/sleep.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/network/network_emulation_manager.h"

namespace webrtc {
namespace test {
namespace {

using ::testing::ElementsAreArray;

constexpr TimeDelta kNetworkPacketWaitTimeout = TimeDelta::Millis(100);
constexpr TimeDelta kStatsWaitTimeout = TimeDelta::Seconds(1);
constexpr int kOverheadIpv4Udp = 20 + 8;

class SocketReader : public sigslot::has_slots<> {
 public:
  explicit SocketReader(rtc::AsyncSocket* socket, rtc::Thread* network_thread)
      : socket_(socket), network_thread_(network_thread) {
    socket_->SignalReadEvent.connect(this, &SocketReader::OnReadEvent);
    size_ = 128 * 1024;
    buf_ = new char[size_];
  }
  ~SocketReader() override { delete[] buf_; }

  void OnReadEvent(rtc::AsyncSocket* socket) {
    RTC_DCHECK(socket_ == socket);
    RTC_DCHECK(network_thread_->IsCurrent());
    int64_t timestamp;
    len_ = socket_->Recv(buf_, size_, &timestamp);

    MutexLock lock(&lock_);
    received_count_++;
  }

  int ReceivedCount() {
    MutexLock lock(&lock_);
    return received_count_;
  }

 private:
  rtc::AsyncSocket* const socket_;
  rtc::Thread* const network_thread_;
  char* buf_;
  size_t size_;
  int len_;

  Mutex lock_;
  int received_count_ RTC_GUARDED_BY(lock_) = 0;
};

class MockReceiver : public EmulatedNetworkReceiverInterface {
 public:
  MOCK_METHOD(void, OnPacketReceived, (EmulatedIpPacket packet), (override));
};

class NetworkEmulationManagerThreeNodesRoutingTest : public ::testing::Test {
 public:
  NetworkEmulationManagerThreeNodesRoutingTest() {
    e1_ = emulation_.CreateEndpoint(EmulatedEndpointConfig());
    e2_ = emulation_.CreateEndpoint(EmulatedEndpointConfig());
    e3_ = emulation_.CreateEndpoint(EmulatedEndpointConfig());
  }

  void SetupRouting(
      std::function<void(EmulatedEndpoint*,
                         EmulatedEndpoint*,
                         EmulatedEndpoint*,
                         NetworkEmulationManager*)> create_routing_func) {
    create_routing_func(e1_, e2_, e3_, &emulation_);
  }

  void SendPacketsAndValidateDelivery() {
    EXPECT_CALL(r_e1_e2_, OnPacketReceived(::testing::_)).Times(1);
    EXPECT_CALL(r_e2_e1_, OnPacketReceived(::testing::_)).Times(1);
    EXPECT_CALL(r_e1_e3_, OnPacketReceived(::testing::_)).Times(1);
    EXPECT_CALL(r_e3_e1_, OnPacketReceived(::testing::_)).Times(1);

    uint16_t common_send_port = 80;
    uint16_t r_e1_e2_port = e2_->BindReceiver(0, &r_e1_e2_).value();
    uint16_t r_e2_e1_port = e1_->BindReceiver(0, &r_e2_e1_).value();
    uint16_t r_e1_e3_port = e3_->BindReceiver(0, &r_e1_e3_).value();
    uint16_t r_e3_e1_port = e1_->BindReceiver(0, &r_e3_e1_).value();

    // Next code is using API of EmulatedEndpoint, that is visible only for
    // internals of network emulation layer. Don't use this API in other tests.
    // Send packet from e1 to e2.
    e1_->SendPacket(
        rtc::SocketAddress(e1_->GetPeerLocalAddress(), common_send_port),
        rtc::SocketAddress(e2_->GetPeerLocalAddress(), r_e1_e2_port),
        rtc::CopyOnWriteBuffer(10));

    // Send packet from e2 to e1.
    e2_->SendPacket(
        rtc::SocketAddress(e2_->GetPeerLocalAddress(), common_send_port),
        rtc::SocketAddress(e1_->GetPeerLocalAddress(), r_e2_e1_port),
        rtc::CopyOnWriteBuffer(10));

    // Send packet from e1 to e3.
    e1_->SendPacket(
        rtc::SocketAddress(e1_->GetPeerLocalAddress(), common_send_port),
        rtc::SocketAddress(e3_->GetPeerLocalAddress(), r_e1_e3_port),
        rtc::CopyOnWriteBuffer(10));

    // Send packet from e3 to e1.
    e3_->SendPacket(
        rtc::SocketAddress(e3_->GetPeerLocalAddress(), common_send_port),
        rtc::SocketAddress(e1_->GetPeerLocalAddress(), r_e3_e1_port),
        rtc::CopyOnWriteBuffer(10));

    // Sleep at the end to wait for async packets delivery.
    emulation_.time_controller()->AdvanceTime(kNetworkPacketWaitTimeout);
  }

 private:
  // Receivers: r_<source endpoint>_<destination endpoint>
  // They must be destroyed after emulation, so they should be declared before.
  MockReceiver r_e1_e2_;
  MockReceiver r_e2_e1_;
  MockReceiver r_e1_e3_;
  MockReceiver r_e3_e1_;

  NetworkEmulationManagerImpl emulation_{TimeMode::kRealTime};
  EmulatedEndpoint* e1_;
  EmulatedEndpoint* e2_;
  EmulatedEndpoint* e3_;
};

EmulatedNetworkNode* CreateEmulatedNodeWithDefaultBuiltInConfig(
    NetworkEmulationManager* emulation) {
  return emulation->CreateEmulatedNode(
      std::make_unique<SimulatedNetwork>(BuiltInNetworkBehaviorConfig()));
}

}  // namespace

using ::testing::_;

TEST(NetworkEmulationManagerTest, GeneratedIpv4AddressDoesNotCollide) {
  NetworkEmulationManagerImpl network_manager(TimeMode::kRealTime);
  std::set<rtc::IPAddress> ips;
  EmulatedEndpointConfig config;
  config.generated_ip_family = EmulatedEndpointConfig::IpAddressFamily::kIpv4;
  for (int i = 0; i < 1000; i++) {
    EmulatedEndpoint* endpoint = network_manager.CreateEndpoint(config);
    ASSERT_EQ(endpoint->GetPeerLocalAddress().family(), AF_INET);
    bool result = ips.insert(endpoint->GetPeerLocalAddress()).second;
    ASSERT_TRUE(result);
  }
}

TEST(NetworkEmulationManagerTest, GeneratedIpv6AddressDoesNotCollide) {
  NetworkEmulationManagerImpl network_manager(TimeMode::kRealTime);
  std::set<rtc::IPAddress> ips;
  EmulatedEndpointConfig config;
  config.generated_ip_family = EmulatedEndpointConfig::IpAddressFamily::kIpv6;
  for (int i = 0; i < 1000; i++) {
    EmulatedEndpoint* endpoint = network_manager.CreateEndpoint(config);
    ASSERT_EQ(endpoint->GetPeerLocalAddress().family(), AF_INET6);
    bool result = ips.insert(endpoint->GetPeerLocalAddress()).second;
    ASSERT_TRUE(result);
  }
}

TEST(NetworkEmulationManagerTest, Run) {
  NetworkEmulationManagerImpl network_manager(TimeMode::kRealTime);

  EmulatedNetworkNode* alice_node = network_manager.CreateEmulatedNode(
      std::make_unique<SimulatedNetwork>(BuiltInNetworkBehaviorConfig()));
  EmulatedNetworkNode* bob_node = network_manager.CreateEmulatedNode(
      std::make_unique<SimulatedNetwork>(BuiltInNetworkBehaviorConfig()));
  EmulatedEndpoint* alice_endpoint =
      network_manager.CreateEndpoint(EmulatedEndpointConfig());
  EmulatedEndpoint* bob_endpoint =
      network_manager.CreateEndpoint(EmulatedEndpointConfig());
  network_manager.CreateRoute(alice_endpoint, {alice_node}, bob_endpoint);
  network_manager.CreateRoute(bob_endpoint, {bob_node}, alice_endpoint);

  EmulatedNetworkManagerInterface* nt1 =
      network_manager.CreateEmulatedNetworkManagerInterface({alice_endpoint});
  EmulatedNetworkManagerInterface* nt2 =
      network_manager.CreateEmulatedNetworkManagerInterface({bob_endpoint});

  rtc::Thread* t1 = nt1->network_thread();
  rtc::Thread* t2 = nt2->network_thread();

  rtc::CopyOnWriteBuffer data("Hello");
  for (uint64_t j = 0; j < 2; j++) {
    auto* s1 = t1->socketserver()->CreateAsyncSocket(AF_INET, SOCK_DGRAM);
    auto* s2 = t2->socketserver()->CreateAsyncSocket(AF_INET, SOCK_DGRAM);

    SocketReader r1(s1, t1);
    SocketReader r2(s2, t2);

    rtc::SocketAddress a1(alice_endpoint->GetPeerLocalAddress(), 0);
    rtc::SocketAddress a2(bob_endpoint->GetPeerLocalAddress(), 0);

    t1->Invoke<void>(RTC_FROM_HERE, [&] {
      s1->Bind(a1);
      a1 = s1->GetLocalAddress();
    });
    t2->Invoke<void>(RTC_FROM_HERE, [&] {
      s2->Bind(a2);
      a2 = s2->GetLocalAddress();
    });

    t1->Invoke<void>(RTC_FROM_HERE, [&] { s1->Connect(a2); });
    t2->Invoke<void>(RTC_FROM_HERE, [&] { s2->Connect(a1); });

    for (uint64_t i = 0; i < 1000; i++) {
      t1->PostTask(RTC_FROM_HERE,
                   [&]() { s1->Send(data.data(), data.size()); });
      t2->PostTask(RTC_FROM_HERE,
                   [&]() { s2->Send(data.data(), data.size()); });
    }

    network_manager.time_controller()->AdvanceTime(TimeDelta::Seconds(1));

    EXPECT_EQ(r1.ReceivedCount(), 1000);
    EXPECT_EQ(r2.ReceivedCount(), 1000);

    t1->Invoke<void>(RTC_FROM_HERE, [&] { delete s1; });
    t2->Invoke<void>(RTC_FROM_HERE, [&] { delete s2; });
  }

  const int64_t single_packet_size = data.size() + kOverheadIpv4Udp;
  std::atomic<int> received_stats_count{0};
  nt1->GetStats([&](EmulatedNetworkStats st) {
    EXPECT_EQ(st.packets_sent, 2000l);
    EXPECT_EQ(st.bytes_sent.bytes(), single_packet_size * 2000l);
    EXPECT_THAT(st.local_addresses,
                ElementsAreArray({alice_endpoint->GetPeerLocalAddress()}));
    EXPECT_EQ(st.PacketsReceived(), 2000l);
    EXPECT_EQ(st.BytesReceived().bytes(), single_packet_size * 2000l);
    EXPECT_EQ(st.PacketsDropped(), 0l);
    EXPECT_EQ(st.BytesDropped().bytes(), 0l);

    EXPECT_EQ(st.incoming_stats_per_source[bob_endpoint->GetPeerLocalAddress()]
                  .packets_received,
              2000l);
    EXPECT_EQ(st.incoming_stats_per_source[bob_endpoint->GetPeerLocalAddress()]
                  .bytes_received.bytes(),
              single_packet_size * 2000l);
    EXPECT_EQ(st.incoming_stats_per_source[bob_endpoint->GetPeerLocalAddress()]
                  .packets_dropped,
              0l);
    EXPECT_EQ(st.incoming_stats_per_source[bob_endpoint->GetPeerLocalAddress()]
                  .bytes_dropped.bytes(),
              0l);
    received_stats_count++;
  });
  nt2->GetStats([&](EmulatedNetworkStats st) {
    EXPECT_EQ(st.packets_sent, 2000l);
    EXPECT_EQ(st.bytes_sent.bytes(), single_packet_size * 2000l);
    EXPECT_THAT(st.local_addresses,
                ElementsAreArray({bob_endpoint->GetPeerLocalAddress()}));
    EXPECT_EQ(st.PacketsReceived(), 2000l);
    EXPECT_EQ(st.BytesReceived().bytes(), single_packet_size * 2000l);
    EXPECT_EQ(st.PacketsDropped(), 0l);
    EXPECT_EQ(st.BytesDropped().bytes(), 0l);
    EXPECT_GT(st.FirstReceivedPacketSize(), DataSize::Zero());
    EXPECT_TRUE(st.FirstPacketReceivedTime().IsFinite());
    EXPECT_TRUE(st.LastPacketReceivedTime().IsFinite());

    EXPECT_EQ(
        st.incoming_stats_per_source[alice_endpoint->GetPeerLocalAddress()]
            .packets_received,
        2000l);
    EXPECT_EQ(
        st.incoming_stats_per_source[alice_endpoint->GetPeerLocalAddress()]
            .bytes_received.bytes(),
        single_packet_size * 2000l);
    EXPECT_EQ(
        st.incoming_stats_per_source[alice_endpoint->GetPeerLocalAddress()]
            .packets_dropped,
        0l);
    EXPECT_EQ(
        st.incoming_stats_per_source[alice_endpoint->GetPeerLocalAddress()]
            .bytes_dropped.bytes(),
        0l);
    received_stats_count++;
  });
  ASSERT_EQ_SIMULATED_WAIT(received_stats_count.load(), 2,
                           kStatsWaitTimeout.ms(),
                           *network_manager.time_controller());
}

TEST(NetworkEmulationManagerTest, ThroughputStats) {
  NetworkEmulationManagerImpl network_manager(TimeMode::kRealTime);

  EmulatedNetworkNode* alice_node = network_manager.CreateEmulatedNode(
      std::make_unique<SimulatedNetwork>(BuiltInNetworkBehaviorConfig()));
  EmulatedNetworkNode* bob_node = network_manager.CreateEmulatedNode(
      std::make_unique<SimulatedNetwork>(BuiltInNetworkBehaviorConfig()));
  EmulatedEndpoint* alice_endpoint =
      network_manager.CreateEndpoint(EmulatedEndpointConfig());
  EmulatedEndpoint* bob_endpoint =
      network_manager.CreateEndpoint(EmulatedEndpointConfig());
  network_manager.CreateRoute(alice_endpoint, {alice_node}, bob_endpoint);
  network_manager.CreateRoute(bob_endpoint, {bob_node}, alice_endpoint);

  EmulatedNetworkManagerInterface* nt1 =
      network_manager.CreateEmulatedNetworkManagerInterface({alice_endpoint});
  EmulatedNetworkManagerInterface* nt2 =
      network_manager.CreateEmulatedNetworkManagerInterface({bob_endpoint});

  rtc::Thread* t1 = nt1->network_thread();
  rtc::Thread* t2 = nt2->network_thread();

  constexpr int64_t kUdpPayloadSize = 100;
  constexpr int64_t kSinglePacketSize = kUdpPayloadSize + kOverheadIpv4Udp;
  rtc::CopyOnWriteBuffer data(kUdpPayloadSize);
  auto* s1 = t1->socketserver()->CreateAsyncSocket(AF_INET, SOCK_DGRAM);
  auto* s2 = t2->socketserver()->CreateAsyncSocket(AF_INET, SOCK_DGRAM);

  SocketReader r1(s1, t1);
  SocketReader r2(s2, t2);

  rtc::SocketAddress a1(alice_endpoint->GetPeerLocalAddress(), 0);
  rtc::SocketAddress a2(bob_endpoint->GetPeerLocalAddress(), 0);

  t1->Invoke<void>(RTC_FROM_HERE, [&] {
    s1->Bind(a1);
    a1 = s1->GetLocalAddress();
  });
  t2->Invoke<void>(RTC_FROM_HERE, [&] {
    s2->Bind(a2);
    a2 = s2->GetLocalAddress();
  });

  t1->Invoke<void>(RTC_FROM_HERE, [&] { s1->Connect(a2); });
  t2->Invoke<void>(RTC_FROM_HERE, [&] { s2->Connect(a1); });

  // Send 11 packets, totalizing 1 second between the first and the last.
  const int kNumPacketsSent = 11;
  const TimeDelta kDelay = TimeDelta::Millis(100);
  for (int i = 0; i < kNumPacketsSent; i++) {
    t1->PostTask(RTC_FROM_HERE, [&]() { s1->Send(data.data(), data.size()); });
    t2->PostTask(RTC_FROM_HERE, [&]() { s2->Send(data.data(), data.size()); });
    network_manager.time_controller()->AdvanceTime(kDelay);
  }

  std::atomic<int> received_stats_count{0};
  nt1->GetStats([&](EmulatedNetworkStats st) {
    EXPECT_EQ(st.packets_sent, kNumPacketsSent);
    EXPECT_EQ(st.bytes_sent.bytes(), kSinglePacketSize * kNumPacketsSent);

    const double tolerance = 0.95;  // Accept 5% tolerance for timing.
    EXPECT_GE(st.last_packet_sent_time - st.first_packet_sent_time,
              (kNumPacketsSent - 1) * kDelay * tolerance);
    EXPECT_GT(st.AverageSendRate().bps(), 0);
    received_stats_count++;
  });

  ASSERT_EQ_SIMULATED_WAIT(received_stats_count.load(), 1,
                           kStatsWaitTimeout.ms(),
                           *network_manager.time_controller());

  EXPECT_EQ(r1.ReceivedCount(), 11);
  EXPECT_EQ(r2.ReceivedCount(), 11);

  t1->Invoke<void>(RTC_FROM_HERE, [&] { delete s1; });
  t2->Invoke<void>(RTC_FROM_HERE, [&] { delete s2; });
}

// Testing that packets are delivered via all routes using a routing scheme as
// follows:
//  * e1 -> n1 -> e2
//  * e2 -> n2 -> e1
//  * e1 -> n3 -> e3
//  * e3 -> n4 -> e1
TEST_F(NetworkEmulationManagerThreeNodesRoutingTest,
       PacketsAreDeliveredInBothWaysWhenConnectedToTwoPeers) {
  SetupRouting([](EmulatedEndpoint* e1, EmulatedEndpoint* e2,
                  EmulatedEndpoint* e3, NetworkEmulationManager* emulation) {
    auto* node1 = CreateEmulatedNodeWithDefaultBuiltInConfig(emulation);
    auto* node2 = CreateEmulatedNodeWithDefaultBuiltInConfig(emulation);
    auto* node3 = CreateEmulatedNodeWithDefaultBuiltInConfig(emulation);
    auto* node4 = CreateEmulatedNodeWithDefaultBuiltInConfig(emulation);

    emulation->CreateRoute(e1, {node1}, e2);
    emulation->CreateRoute(e2, {node2}, e1);

    emulation->CreateRoute(e1, {node3}, e3);
    emulation->CreateRoute(e3, {node4}, e1);
  });
  SendPacketsAndValidateDelivery();
}

// Testing that packets are delivered via all routes using a routing scheme as
// follows:
//  * e1 -> n1 -> e2
//  * e2 -> n2 -> e1
//  * e1 -> n1 -> e3
//  * e3 -> n4 -> e1
TEST_F(NetworkEmulationManagerThreeNodesRoutingTest,
       PacketsAreDeliveredInBothWaysWhenConnectedToTwoPeersOverSameSendLink) {
  SetupRouting([](EmulatedEndpoint* e1, EmulatedEndpoint* e2,
                  EmulatedEndpoint* e3, NetworkEmulationManager* emulation) {
    auto* node1 = CreateEmulatedNodeWithDefaultBuiltInConfig(emulation);
    auto* node2 = CreateEmulatedNodeWithDefaultBuiltInConfig(emulation);
    auto* node3 = CreateEmulatedNodeWithDefaultBuiltInConfig(emulation);

    emulation->CreateRoute(e1, {node1}, e2);
    emulation->CreateRoute(e2, {node2}, e1);

    emulation->CreateRoute(e1, {node1}, e3);
    emulation->CreateRoute(e3, {node3}, e1);
  });
  SendPacketsAndValidateDelivery();
}

}  // namespace test
}  // namespace webrtc