aboutsummaryrefslogtreecommitdiff
path: root/test/time_controller/simulated_time_controller.cc
blob: aba8c6600e1a35d60cfd6acfd70eac495a80543c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/*
 *  Copyright 2019 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "test/time_controller/simulated_time_controller.h"

#include <algorithm>
#include <deque>
#include <list>
#include <memory>
#include <string>
#include <thread>
#include <vector>

#include "absl/strings/string_view.h"
#include "test/time_controller/simulated_process_thread.h"
#include "test/time_controller/simulated_task_queue.h"
#include "test/time_controller/simulated_thread.h"

namespace webrtc {
namespace {
// Helper function to remove from a std container by value.
template <class C>
bool RemoveByValue(C* vec, typename C::value_type val) {
  auto it = std::find(vec->begin(), vec->end(), val);
  if (it == vec->end())
    return false;
  vec->erase(it);
  return true;
}
}  // namespace

namespace sim_time_impl {

SimulatedTimeControllerImpl::SimulatedTimeControllerImpl(Timestamp start_time)
    : thread_id_(rtc::CurrentThreadId()), current_time_(start_time) {}

SimulatedTimeControllerImpl::~SimulatedTimeControllerImpl() = default;

std::unique_ptr<TaskQueueBase, TaskQueueDeleter>
SimulatedTimeControllerImpl::CreateTaskQueue(
    absl::string_view name,
    TaskQueueFactory::Priority priority) const {
  // TODO(srte): Remove the const cast when the interface is made mutable.
  auto mutable_this = const_cast<SimulatedTimeControllerImpl*>(this);
  auto task_queue = std::unique_ptr<SimulatedTaskQueue, TaskQueueDeleter>(
      new SimulatedTaskQueue(mutable_this, name));
  ;
  mutable_this->Register(task_queue.get());
  return task_queue;
}

std::unique_ptr<ProcessThread> SimulatedTimeControllerImpl::CreateProcessThread(
    const char* thread_name) {
  auto process_thread =
      std::make_unique<SimulatedProcessThread>(this, thread_name);
  Register(process_thread.get());
  return process_thread;
}

std::unique_ptr<rtc::Thread> SimulatedTimeControllerImpl::CreateThread(
    const std::string& name,
    std::unique_ptr<rtc::SocketServer> socket_server) {
  auto thread =
      std::make_unique<SimulatedThread>(this, name, std::move(socket_server));
  Register(thread.get());
  return thread;
}

void SimulatedTimeControllerImpl::YieldExecution() {
  if (rtc::CurrentThreadId() == thread_id_) {
    TaskQueueBase* yielding_from = TaskQueueBase::Current();
    // Since we might continue execution on a process thread, we should reset
    // the thread local task queue reference. This ensures that thread checkers
    // won't think we are executing on the yielding task queue. It also ensure
    // that TaskQueueBase::Current() won't return the yielding task queue.
    TokenTaskQueue::CurrentTaskQueueSetter reset_queue(nullptr);
    // When we yield, we don't want to risk executing further tasks on the
    // currently executing task queue. If there's a ready task that also yields,
    // it's added to this set as well and only tasks on the remaining task
    // queues are executed.
    auto inserted = yielded_.insert(yielding_from);
    RTC_DCHECK(inserted.second);
    RunReadyRunners();
    yielded_.erase(inserted.first);
  }
}

void SimulatedTimeControllerImpl::RunReadyRunners() {
  // Using a dummy thread rather than nullptr to avoid implicit thread creation
  // by Thread::Current().
  SimulatedThread::CurrentThreadSetter set_current(dummy_thread_.get());
  MutexLock lock(&lock_);
  RTC_DCHECK_EQ(rtc::CurrentThreadId(), thread_id_);
  Timestamp current_time = CurrentTime();
  // Clearing |ready_runners_| in case this is a recursive call:
  // RunReadyRunners -> Run -> Event::Wait -> Yield ->RunReadyRunners
  ready_runners_.clear();

  // We repeat until we have no ready left to handle tasks posted by ready
  // runners.
  while (true) {
    for (auto* runner : runners_) {
      if (yielded_.find(runner->GetAsTaskQueue()) == yielded_.end() &&
          runner->GetNextRunTime() <= current_time) {
        ready_runners_.push_back(runner);
      }
    }
    if (ready_runners_.empty())
      break;
    while (!ready_runners_.empty()) {
      auto* runner = ready_runners_.front();
      ready_runners_.pop_front();
      lock_.Unlock();
      // Note that the RunReady function might indirectly cause a call to
      // Unregister() which will grab |lock_| again to remove items from
      // |ready_runners_|.
      runner->RunReady(current_time);
      lock_.Lock();
    }
  }
}

Timestamp SimulatedTimeControllerImpl::CurrentTime() const {
  MutexLock lock(&time_lock_);
  return current_time_;
}

Timestamp SimulatedTimeControllerImpl::NextRunTime() const {
  Timestamp current_time = CurrentTime();
  Timestamp next_time = Timestamp::PlusInfinity();
  MutexLock lock(&lock_);
  for (auto* runner : runners_) {
    Timestamp next_run_time = runner->GetNextRunTime();
    if (next_run_time <= current_time)
      return current_time;
    next_time = std::min(next_time, next_run_time);
  }
  return next_time;
}

void SimulatedTimeControllerImpl::AdvanceTime(Timestamp target_time) {
  MutexLock time_lock(&time_lock_);
  RTC_DCHECK_GE(target_time, current_time_);
  current_time_ = target_time;
}

void SimulatedTimeControllerImpl::Register(SimulatedSequenceRunner* runner) {
  MutexLock lock(&lock_);
  runners_.push_back(runner);
}

void SimulatedTimeControllerImpl::Unregister(SimulatedSequenceRunner* runner) {
  MutexLock lock(&lock_);
  bool removed = RemoveByValue(&runners_, runner);
  RTC_CHECK(removed);
  RemoveByValue(&ready_runners_, runner);
}

void SimulatedTimeControllerImpl::StartYield(TaskQueueBase* yielding_from) {
  auto inserted = yielded_.insert(yielding_from);
  RTC_DCHECK(inserted.second);
}

void SimulatedTimeControllerImpl::StopYield(TaskQueueBase* yielding_from) {
  yielded_.erase(yielding_from);
}

}  // namespace sim_time_impl

GlobalSimulatedTimeController::GlobalSimulatedTimeController(
    Timestamp start_time)
    : sim_clock_(start_time.us()), impl_(start_time), yield_policy_(&impl_) {
  global_clock_.SetTime(start_time);
  auto main_thread = std::make_unique<SimulatedMainThread>(&impl_);
  impl_.Register(main_thread.get());
  main_thread_ = std::move(main_thread);
}

GlobalSimulatedTimeController::~GlobalSimulatedTimeController() = default;

Clock* GlobalSimulatedTimeController::GetClock() {
  return &sim_clock_;
}

TaskQueueFactory* GlobalSimulatedTimeController::GetTaskQueueFactory() {
  return &impl_;
}

std::unique_ptr<ProcessThread>
GlobalSimulatedTimeController::CreateProcessThread(const char* thread_name) {
  return impl_.CreateProcessThread(thread_name);
}

std::unique_ptr<rtc::Thread> GlobalSimulatedTimeController::CreateThread(
    const std::string& name,
    std::unique_ptr<rtc::SocketServer> socket_server) {
  return impl_.CreateThread(name, std::move(socket_server));
}

rtc::Thread* GlobalSimulatedTimeController::GetMainThread() {
  return main_thread_.get();
}

void GlobalSimulatedTimeController::AdvanceTime(TimeDelta duration) {
  rtc::ScopedYieldPolicy yield_policy(&impl_);
  Timestamp current_time = impl_.CurrentTime();
  Timestamp target_time = current_time + duration;
  RTC_DCHECK_EQ(current_time.us(), rtc::TimeMicros());
  while (current_time < target_time) {
    impl_.RunReadyRunners();
    Timestamp next_time = std::min(impl_.NextRunTime(), target_time);
    impl_.AdvanceTime(next_time);
    auto delta = next_time - current_time;
    current_time = next_time;
    sim_clock_.AdvanceTimeMicroseconds(delta.us());
    global_clock_.AdvanceTime(delta);
  }
  // After time has been simulated up until |target_time| we also need to run
  // tasks meant to be executed at |target_time|.
  impl_.RunReadyRunners();
}

}  // namespace webrtc