aboutsummaryrefslogtreecommitdiff
path: root/third_party/abseil-cpp/absl/strings/internal/cord_internal.h
blob: bfe5564e46882912308760d1193816102edd6e59 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
// Copyright 2021 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef ABSL_STRINGS_INTERNAL_CORD_INTERNAL_H_
#define ABSL_STRINGS_INTERNAL_CORD_INTERNAL_H_

#include <atomic>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <type_traits>

#include "absl/base/config.h"
#include "absl/base/internal/endian.h"
#include "absl/base/internal/invoke.h"
#include "absl/base/optimization.h"
#include "absl/container/internal/compressed_tuple.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/string_view.h"

namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {

class CordzInfo;

// Default feature enable states for cord ring buffers
enum CordFeatureDefaults {
  kCordEnableBtreeDefault = true,
  kCordEnableRingBufferDefault = false,
  kCordShallowSubcordsDefault = false
};

extern std::atomic<bool> cord_btree_enabled;
extern std::atomic<bool> cord_ring_buffer_enabled;
extern std::atomic<bool> shallow_subcords_enabled;

// `cord_btree_exhaustive_validation` can be set to force exhaustive validation
// in debug assertions, and code that calls `IsValid()` explicitly. By default,
// assertions should be relatively cheap and AssertValid() can easily lead to
// O(n^2) complexity as recursive / full tree validation is O(n).
extern std::atomic<bool> cord_btree_exhaustive_validation;

inline void enable_cord_btree(bool enable) {
  cord_btree_enabled.store(enable, std::memory_order_relaxed);
}

inline void enable_cord_ring_buffer(bool enable) {
  cord_ring_buffer_enabled.store(enable, std::memory_order_relaxed);
}

inline void enable_shallow_subcords(bool enable) {
  shallow_subcords_enabled.store(enable, std::memory_order_relaxed);
}

enum Constants {
  // The inlined size to use with absl::InlinedVector.
  //
  // Note: The InlinedVectors in this file (and in cord.h) do not need to use
  // the same value for their inlined size. The fact that they do is historical.
  // It may be desirable for each to use a different inlined size optimized for
  // that InlinedVector's usage.
  //
  // TODO(jgm): Benchmark to see if there's a more optimal value than 47 for
  // the inlined vector size (47 exists for backward compatibility).
  kInlinedVectorSize = 47,

  // Prefer copying blocks of at most this size, otherwise reference count.
  kMaxBytesToCopy = 511
};

// Compact class for tracking the reference count and state flags for CordRep
// instances.  Data is stored in an atomic int32_t for compactness and speed.
class RefcountAndFlags {
 public:
  constexpr RefcountAndFlags() : count_{kRefIncrement} {}
  struct Immortal {};
  explicit constexpr RefcountAndFlags(Immortal) : count_(kImmortalFlag) {}
  struct WithCrc {};
  explicit constexpr RefcountAndFlags(WithCrc)
      : count_(kCrcFlag | kRefIncrement) {}

  // Increments the reference count. Imposes no memory ordering.
  inline void Increment() {
    count_.fetch_add(kRefIncrement, std::memory_order_relaxed);
  }

  // Asserts that the current refcount is greater than 0. If the refcount is
  // greater than 1, decrements the reference count.
  //
  // Returns false if there are no references outstanding; true otherwise.
  // Inserts barriers to ensure that state written before this method returns
  // false will be visible to a thread that just observed this method returning
  // false.  Always returns false when the immortal bit is set.
  inline bool Decrement() {
    int32_t refcount = count_.load(std::memory_order_acquire) & kRefcountMask;
    assert(refcount > 0 || refcount & kImmortalFlag);
    return refcount != kRefIncrement &&
           (count_.fetch_sub(kRefIncrement, std::memory_order_acq_rel) &
            kRefcountMask) != kRefIncrement;
  }

  // Same as Decrement but expect that refcount is greater than 1.
  inline bool DecrementExpectHighRefcount() {
    int32_t refcount =
        count_.fetch_sub(kRefIncrement, std::memory_order_acq_rel) &
        kRefcountMask;
    assert(refcount > 0 || refcount & kImmortalFlag);
    return refcount != kRefIncrement;
  }

  // Returns the current reference count using acquire semantics.
  inline int32_t Get() const {
    return count_.load(std::memory_order_acquire) >> kNumFlags;
  }

  // Returns true if the referenced object carries a CRC value.
  bool HasCrc() const {
    return (count_.load(std::memory_order_relaxed) & kCrcFlag) != 0;
  }

  // Returns true iff the atomic integer is 1 and this node does not store
  // a CRC.  When both these conditions are met, the current thread owns
  // the reference and no other thread shares it, so its contents may be
  // safely mutated.
  //
  // If the referenced item is shared, carries a CRC, or is immortal,
  // it should not be modified in-place, and this function returns false.
  //
  // This call performs the memory barrier needed for the owning thread
  // to act on the object, so that if it returns true, it may safely
  // assume exclusive access to the object.
  inline bool IsMutable() {
    return (count_.load(std::memory_order_acquire)) == kRefIncrement;
  }

  // Returns whether the atomic integer is 1.  Similar to IsMutable(),
  // but does not check for a stored CRC.  (An unshared node with a CRC is not
  // mutable, because changing its data would invalidate the CRC.)
  //
  // When this returns true, there are no other references, and data sinks
  // may safely adopt the children of the CordRep.
  inline bool IsOne() {
    return (count_.load(std::memory_order_acquire) & kRefcountMask) ==
           kRefIncrement;
  }

  bool IsImmortal() const {
    return (count_.load(std::memory_order_relaxed) & kImmortalFlag) != 0;
  }

 private:
  // We reserve the bottom bits for flags.
  // kImmortalBit indicates that this entity should never be collected; it is
  // used for the StringConstant constructor to avoid collecting immutable
  // constant cords.
  // kReservedFlag is reserved for future use.
  enum {
    kNumFlags = 2,

    kImmortalFlag = 0x1,
    kCrcFlag = 0x2,
    kRefIncrement = (1 << kNumFlags),

    // Bitmask to use when checking refcount by equality.  This masks out
    // all flags except kImmortalFlag, which is part of the refcount for
    // purposes of equality.  (A refcount of 0 or 1 does not count as 0 or 1
    // if the immortal bit is set.)
    kRefcountMask = ~kCrcFlag,
  };

  std::atomic<int32_t> count_;
};

// The overhead of a vtable is too much for Cord, so we roll our own subclasses
// using only a single byte to differentiate classes from each other - the "tag"
// byte.  Define the subclasses first so we can provide downcasting helper
// functions in the base class.

struct CordRepConcat;
struct CordRepExternal;
struct CordRepFlat;
struct CordRepSubstring;
class CordRepRing;
class CordRepBtree;

// Various representations that we allow
enum CordRepKind {
  CONCAT = 0,
  SUBSTRING = 1,
  BTREE = 2,
  RING = 3,
  EXTERNAL = 4,

  // We have different tags for different sized flat arrays,
  // starting with FLAT, and limited to MAX_FLAT_TAG. The 225 value is based on
  // the current 'size to tag' encoding of 8 / 32 bytes. If a new tag is needed
  // in the future, then 'FLAT' and 'MAX_FLAT_TAG' should be adjusted as well
  // as the Tag <---> Size logic so that FLAT stil represents the minimum flat
  // allocation size. (32 bytes as of now).
  FLAT = 5,
  MAX_FLAT_TAG = 225
};

// There are various locations where we want to check if some rep is a 'plain'
// data edge, i.e. an external or flat rep. By having FLAT == EXTERNAL + 1, we
// can perform this check in a single branch as 'tag >= EXTERNAL'
// Likewise, we have some locations where we check for 'ring or external/flat',
// so likewise align RING to EXTERNAL.
// Note that we can leave this optimization to the compiler. The compiler will
// DTRT when it sees a condition like `tag == EXTERNAL || tag >= FLAT`.
static_assert(RING == BTREE + 1, "BTREE and RING not consecutive");
static_assert(EXTERNAL == RING + 1, "BTREE and EXTERNAL not consecutive");
static_assert(FLAT == EXTERNAL + 1, "EXTERNAL and FLAT not consecutive");

struct CordRep {
  CordRep() = default;
  constexpr CordRep(RefcountAndFlags::Immortal immortal, size_t l)
      : length(l), refcount(immortal), tag(EXTERNAL), storage{} {}

  // The following three fields have to be less than 32 bytes since
  // that is the smallest supported flat node size.
  size_t length;
  RefcountAndFlags refcount;
  // If tag < FLAT, it represents CordRepKind and indicates the type of node.
  // Otherwise, the node type is CordRepFlat and the tag is the encoded size.
  uint8_t tag;

  // `storage` provides two main purposes:
  // - the starting point for FlatCordRep.Data() [flexible-array-member]
  // - 3 bytes of additional storage for use by derived classes.
  // The latter is used by CordrepConcat and CordRepBtree. CordRepConcat stores
  // a 'depth' value in storage[0], and the (future) CordRepBtree class stores
  // `height`, `begin` and `end` in the 3 entries. Otherwise we would need to
  // allocate room for these in the derived class, as not all compilers reuse
  // padding space from the base class (clang and gcc do, MSVC does not, etc)
  uint8_t storage[3];

  // Returns true if this instance's tag matches the requested type.
  constexpr bool IsRing() const { return tag == RING; }
  constexpr bool IsConcat() const { return tag == CONCAT; }
  constexpr bool IsSubstring() const { return tag == SUBSTRING; }
  constexpr bool IsExternal() const { return tag == EXTERNAL; }
  constexpr bool IsFlat() const { return tag >= FLAT; }
  constexpr bool IsBtree() const { return tag == BTREE; }

  inline CordRepRing* ring();
  inline const CordRepRing* ring() const;
  inline CordRepConcat* concat();
  inline const CordRepConcat* concat() const;
  inline CordRepSubstring* substring();
  inline const CordRepSubstring* substring() const;
  inline CordRepExternal* external();
  inline const CordRepExternal* external() const;
  inline CordRepFlat* flat();
  inline const CordRepFlat* flat() const;
  inline CordRepBtree* btree();
  inline const CordRepBtree* btree() const;

  // --------------------------------------------------------------------
  // Memory management

  // Destroys the provided `rep`.
  static void Destroy(CordRep* rep);

  // Increments the reference count of `rep`.
  // Requires `rep` to be a non-null pointer value.
  static inline CordRep* Ref(CordRep* rep);

  // Decrements the reference count of `rep`. Destroys rep if count reaches
  // zero. Requires `rep` to be a non-null pointer value.
  static inline void Unref(CordRep* rep);
};

struct CordRepConcat : public CordRep {
  CordRep* left;
  CordRep* right;

  uint8_t depth() const { return storage[0]; }
  void set_depth(uint8_t depth) { storage[0] = depth; }
};

struct CordRepSubstring : public CordRep {
  size_t start;  // Starting offset of substring in child
  CordRep* child;
};

// Type for function pointer that will invoke the releaser function and also
// delete the `CordRepExternalImpl` corresponding to the passed in
// `CordRepExternal`.
using ExternalReleaserInvoker = void (*)(CordRepExternal*);

// External CordReps are allocated together with a type erased releaser. The
// releaser is stored in the memory directly following the CordRepExternal.
struct CordRepExternal : public CordRep {
  CordRepExternal() = default;
  explicit constexpr CordRepExternal(absl::string_view str)
      : CordRep(RefcountAndFlags::Immortal{}, str.size()),
        base(str.data()),
        releaser_invoker(nullptr) {}

  const char* base;
  // Pointer to function that knows how to call and destroy the releaser.
  ExternalReleaserInvoker releaser_invoker;

  // Deletes (releases) the external rep.
  // Requires rep != nullptr and rep->IsExternal()
  static void Delete(CordRep* rep);
};

struct Rank1 {};
struct Rank0 : Rank1 {};

template <typename Releaser, typename = ::absl::base_internal::invoke_result_t<
                                 Releaser, absl::string_view>>
void InvokeReleaser(Rank0, Releaser&& releaser, absl::string_view data) {
  ::absl::base_internal::invoke(std::forward<Releaser>(releaser), data);
}

template <typename Releaser,
          typename = ::absl::base_internal::invoke_result_t<Releaser>>
void InvokeReleaser(Rank1, Releaser&& releaser, absl::string_view) {
  ::absl::base_internal::invoke(std::forward<Releaser>(releaser));
}

// We use CompressedTuple so that we can benefit from EBCO.
template <typename Releaser>
struct CordRepExternalImpl
    : public CordRepExternal,
      public ::absl::container_internal::CompressedTuple<Releaser> {
  // The extra int arg is so that we can avoid interfering with copy/move
  // constructors while still benefitting from perfect forwarding.
  template <typename T>
  CordRepExternalImpl(T&& releaser, int)
      : CordRepExternalImpl::CompressedTuple(std::forward<T>(releaser)) {
    this->releaser_invoker = &Release;
  }

  ~CordRepExternalImpl() {
    InvokeReleaser(Rank0{}, std::move(this->template get<0>()),
                   absl::string_view(base, length));
  }

  static void Release(CordRepExternal* rep) {
    delete static_cast<CordRepExternalImpl*>(rep);
  }
};

inline void CordRepExternal::Delete(CordRep* rep) {
  assert(rep != nullptr && rep->IsExternal());
  auto* rep_external = static_cast<CordRepExternal*>(rep);
  assert(rep_external->releaser_invoker != nullptr);
  rep_external->releaser_invoker(rep_external);
}

template <typename Str>
struct ConstInitExternalStorage {
  ABSL_CONST_INIT static CordRepExternal value;
};

template <typename Str>
CordRepExternal ConstInitExternalStorage<Str>::value(Str::value);

enum {
  kMaxInline = 15,
};

constexpr char GetOrNull(absl::string_view data, size_t pos) {
  return pos < data.size() ? data[pos] : '\0';
}

// We store cordz_info as 64 bit pointer value in big endian format. This
// guarantees that the least significant byte of cordz_info matches the last
// byte of the inline data representation in as_chars_, which holds the inlined
// size or the 'is_tree' bit.
using cordz_info_t = int64_t;

// Assert that the `cordz_info` pointer value perfectly overlaps the last half
// of `as_chars_` and can hold a pointer value.
static_assert(sizeof(cordz_info_t) * 2 == kMaxInline + 1, "");
static_assert(sizeof(cordz_info_t) >= sizeof(intptr_t), "");

// BigEndianByte() creates a big endian representation of 'value', i.e.: a big
// endian value where the last byte in the host's representation holds 'value`,
// with all other bytes being 0.
static constexpr cordz_info_t BigEndianByte(unsigned char value) {
#if defined(ABSL_IS_BIG_ENDIAN)
  return value;
#else
  return static_cast<cordz_info_t>(value) << ((sizeof(cordz_info_t) - 1) * 8);
#endif
}

class InlineData {
 public:
  // DefaultInitType forces the use of the default initialization constructor.
  enum DefaultInitType { kDefaultInit };

  // kNullCordzInfo holds the big endian representation of intptr_t(1)
  // This is the 'null' / initial value of 'cordz_info'. The null value
  // is specifically big endian 1 as with 64-bit pointers, the last
  // byte of cordz_info overlaps with the last byte holding the tag.
  static constexpr cordz_info_t kNullCordzInfo = BigEndianByte(1);

  constexpr InlineData() : as_chars_{0} {}
  explicit InlineData(DefaultInitType) {}
  explicit constexpr InlineData(CordRep* rep) : as_tree_(rep) {}
  explicit constexpr InlineData(absl::string_view chars)
      : as_chars_{
            GetOrNull(chars, 0),  GetOrNull(chars, 1),
            GetOrNull(chars, 2),  GetOrNull(chars, 3),
            GetOrNull(chars, 4),  GetOrNull(chars, 5),
            GetOrNull(chars, 6),  GetOrNull(chars, 7),
            GetOrNull(chars, 8),  GetOrNull(chars, 9),
            GetOrNull(chars, 10), GetOrNull(chars, 11),
            GetOrNull(chars, 12), GetOrNull(chars, 13),
            GetOrNull(chars, 14), static_cast<char>((chars.size() << 1))} {}

  // Returns true if the current instance is empty.
  // The 'empty value' is an inlined data value of zero length.
  bool is_empty() const { return tag() == 0; }

  // Returns true if the current instance holds a tree value.
  bool is_tree() const { return (tag() & 1) != 0; }

  // Returns true if the current instance holds a cordz_info value.
  // Requires the current instance to hold a tree value.
  bool is_profiled() const {
    assert(is_tree());
    return as_tree_.cordz_info != kNullCordzInfo;
  }

  // Returns true if either of the provided instances hold a cordz_info value.
  // This method is more efficient than the equivalent `data1.is_profiled() ||
  // data2.is_profiled()`. Requires both arguments to hold a tree.
  static bool is_either_profiled(const InlineData& data1,
                                 const InlineData& data2) {
    assert(data1.is_tree() && data2.is_tree());
    return (data1.as_tree_.cordz_info | data2.as_tree_.cordz_info) !=
           kNullCordzInfo;
  }

  // Returns the cordz_info sampling instance for this instance, or nullptr
  // if the current instance is not sampled and does not have CordzInfo data.
  // Requires the current instance to hold a tree value.
  CordzInfo* cordz_info() const {
    assert(is_tree());
    intptr_t info =
        static_cast<intptr_t>(absl::big_endian::ToHost64(as_tree_.cordz_info));
    assert(info & 1);
    return reinterpret_cast<CordzInfo*>(info - 1);
  }

  // Sets the current cordz_info sampling instance for this instance, or nullptr
  // if the current instance is not sampled and does not have CordzInfo data.
  // Requires the current instance to hold a tree value.
  void set_cordz_info(CordzInfo* cordz_info) {
    assert(is_tree());
    intptr_t info = reinterpret_cast<intptr_t>(cordz_info) | 1;
    as_tree_.cordz_info = absl::big_endian::FromHost64(info);
  }

  // Resets the current cordz_info to null / empty.
  void clear_cordz_info() {
    assert(is_tree());
    as_tree_.cordz_info = kNullCordzInfo;
  }

  // Returns a read only pointer to the character data inside this instance.
  // Requires the current instance to hold inline data.
  const char* as_chars() const {
    assert(!is_tree());
    return as_chars_;
  }

  // Returns a mutable pointer to the character data inside this instance.
  // Should be used for 'write only' operations setting an inlined value.
  // Applications can set the value of inlined data either before or after
  // setting the inlined size, i.e., both of the below are valid:
  //
  //   // Set inlined data and inline size
  //   memcpy(data_.as_chars(), data, size);
  //   data_.set_inline_size(size);
  //
  //   // Set inlined size and inline data
  //   data_.set_inline_size(size);
  //   memcpy(data_.as_chars(), data, size);
  //
  // It's an error to read from the returned pointer without a preceding write
  // if the current instance does not hold inline data, i.e.: is_tree() == true.
  char* as_chars() { return as_chars_; }

  // Returns the tree value of this value.
  // Requires the current instance to hold a tree value.
  CordRep* as_tree() const {
    assert(is_tree());
    return as_tree_.rep;
  }

  // Initialize this instance to holding the tree value `rep`,
  // initializing the cordz_info to null, i.e.: 'not profiled'.
  void make_tree(CordRep* rep) {
    as_tree_.rep = rep;
    as_tree_.cordz_info = kNullCordzInfo;
  }

  // Set the tree value of this instance to 'rep`.
  // Requires the current instance to already hold a tree value.
  // Does not affect the value of cordz_info.
  void set_tree(CordRep* rep) {
    assert(is_tree());
    as_tree_.rep = rep;
  }

  // Returns the size of the inlined character data inside this instance.
  // Requires the current instance to hold inline data.
  size_t inline_size() const {
    assert(!is_tree());
    return tag() >> 1;
  }

  // Sets the size of the inlined character data inside this instance.
  // Requires `size` to be <= kMaxInline.
  // See the documentation on 'as_chars()' for more information and examples.
  void set_inline_size(size_t size) {
    ABSL_ASSERT(size <= kMaxInline);
    tag() = static_cast<char>(size << 1);
  }

 private:
  // See cordz_info_t for forced alignment and size of `cordz_info` details.
  struct AsTree {
    explicit constexpr AsTree(absl::cord_internal::CordRep* tree)
        : rep(tree), cordz_info(kNullCordzInfo) {}
    // This union uses up extra space so that whether rep is 32 or 64 bits,
    // cordz_info will still start at the eighth byte, and the last
    // byte of cordz_info will still be the last byte of InlineData.
    union {
      absl::cord_internal::CordRep* rep;
      cordz_info_t unused_aligner;
    };
    cordz_info_t cordz_info;
  };

  char& tag() { return reinterpret_cast<char*>(this)[kMaxInline]; }
  char tag() const { return reinterpret_cast<const char*>(this)[kMaxInline]; }

  // If the data has length <= kMaxInline, we store it in `as_chars_`, and
  // store the size in the last char of `as_chars_` shifted left + 1.
  // Else we store it in a tree and store a pointer to that tree in
  // `as_tree_.rep` and store a tag in `tagged_size`.
  union {
    char as_chars_[kMaxInline + 1];
    AsTree as_tree_;
  };
};

static_assert(sizeof(InlineData) == kMaxInline + 1, "");

inline CordRepConcat* CordRep::concat() {
  assert(IsConcat());
  return static_cast<CordRepConcat*>(this);
}

inline const CordRepConcat* CordRep::concat() const {
  assert(IsConcat());
  return static_cast<const CordRepConcat*>(this);
}

inline CordRepSubstring* CordRep::substring() {
  assert(IsSubstring());
  return static_cast<CordRepSubstring*>(this);
}

inline const CordRepSubstring* CordRep::substring() const {
  assert(IsSubstring());
  return static_cast<const CordRepSubstring*>(this);
}

inline CordRepExternal* CordRep::external() {
  assert(IsExternal());
  return static_cast<CordRepExternal*>(this);
}

inline const CordRepExternal* CordRep::external() const {
  assert(IsExternal());
  return static_cast<const CordRepExternal*>(this);
}

inline CordRep* CordRep::Ref(CordRep* rep) {
  assert(rep != nullptr);
  rep->refcount.Increment();
  return rep;
}

inline void CordRep::Unref(CordRep* rep) {
  assert(rep != nullptr);
  // Expect refcount to be 0. Avoiding the cost of an atomic decrement should
  // typically outweigh the cost of an extra branch checking for ref == 1.
  if (ABSL_PREDICT_FALSE(!rep->refcount.DecrementExpectHighRefcount())) {
    Destroy(rep);
  }
}

}  // namespace cord_internal

ABSL_NAMESPACE_END
}  // namespace absl
#endif  // ABSL_STRINGS_INTERNAL_CORD_INTERNAL_H_