aboutsummaryrefslogtreecommitdiff
path: root/third_party/abseil-cpp/absl/strings/internal/cord_rep_btree_navigator_test.cc
blob: ce09b1992a43ab0c1f8a3d26fb200be33b6bb803 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
// Copyright 2021 The Abseil Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/strings/internal/cord_rep_btree_navigator.h"

#include <string>
#include <vector>

#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/config.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_btree.h"
#include "absl/strings/internal/cord_rep_test_util.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"

namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
namespace {

using ::testing::Eq;
using ::testing::Ne;

using ::absl::cordrep_testing::CordRepBtreeFromFlats;
using ::absl::cordrep_testing::CordToString;
using ::absl::cordrep_testing::CreateFlatsFromString;
using ::absl::cordrep_testing::CreateRandomString;
using ::absl::cordrep_testing::MakeFlat;
using ::absl::cordrep_testing::MakeSubstring;

using ReadResult = CordRepBtreeNavigator::ReadResult;
using Position = CordRepBtreeNavigator::Position;

// CordRepBtreeNavigatorTest is a test fixture which automatically creates a
// tree to test navigation logic on. The parameter `count' defines the number of
// data edges in the test tree.
class CordRepBtreeNavigatorTest : public testing::TestWithParam<int> {
 public:
  using Flats = std::vector<CordRep*>;
  static constexpr size_t kCharsPerFlat = 3;

  CordRepBtreeNavigatorTest() {
    data_ = CreateRandomString(count() * kCharsPerFlat);
    flats_ = CreateFlatsFromString(data_, kCharsPerFlat);

    // Turn flat 0 or 1 into a substring to cover partial reads on substrings.
    if (count() > 1) {
      CordRep::Unref(flats_[1]);
      flats_[1] = MakeSubstring(kCharsPerFlat, kCharsPerFlat, MakeFlat(data_));
    } else {
      CordRep::Unref(flats_[0]);
      flats_[0] = MakeSubstring(0, kCharsPerFlat, MakeFlat(data_));
    }

    tree_ = CordRepBtreeFromFlats(flats_);
  }

  ~CordRepBtreeNavigatorTest() override { CordRep::Unref(tree_); }

  int count() const { return GetParam(); }
  CordRepBtree* tree() { return tree_; }
  const std::string& data() const { return data_; }
  const std::vector<CordRep*>& flats() const { return flats_; }

  static std::string ToString(testing::TestParamInfo<int> param) {
    return absl::StrCat(param.param, "_Flats");
  }

 private:
  std::string data_;
  Flats flats_;
  CordRepBtree* tree_;
};

INSTANTIATE_TEST_SUITE_P(
    WithParam, CordRepBtreeNavigatorTest,
    testing::Values(1, CordRepBtree::kMaxCapacity - 1,
                    CordRepBtree::kMaxCapacity,
                    CordRepBtree::kMaxCapacity* CordRepBtree::kMaxCapacity - 1,
                    CordRepBtree::kMaxCapacity* CordRepBtree::kMaxCapacity,
                    CordRepBtree::kMaxCapacity* CordRepBtree::kMaxCapacity + 1,
                    CordRepBtree::kMaxCapacity* CordRepBtree::kMaxCapacity * 2 +
                        17),
    CordRepBtreeNavigatorTest::ToString);

TEST(CordRepBtreeNavigatorTest, Uninitialized) {
  CordRepBtreeNavigator nav;
  EXPECT_FALSE(nav);
  EXPECT_THAT(nav.btree(), Eq(nullptr));
#if defined(GTEST_HAS_DEATH_TEST) && !defined(NDEBUG)
  EXPECT_DEATH(nav.Current(), ".*");
#endif
}

TEST_P(CordRepBtreeNavigatorTest, InitFirst) {
  CordRepBtreeNavigator nav;
  CordRep* edge = nav.InitFirst(tree());
  EXPECT_TRUE(nav);
  EXPECT_THAT(nav.btree(), Eq(tree()));
  EXPECT_THAT(nav.Current(), Eq(flats().front()));
  EXPECT_THAT(edge, Eq(flats().front()));
}

TEST_P(CordRepBtreeNavigatorTest, InitLast) {
  CordRepBtreeNavigator nav;
  CordRep* edge = nav.InitLast(tree());
  EXPECT_TRUE(nav);
  EXPECT_THAT(nav.btree(), Eq(tree()));
  EXPECT_THAT(nav.Current(), Eq(flats().back()));
  EXPECT_THAT(edge, Eq(flats().back()));
}

TEST_P(CordRepBtreeNavigatorTest, NextPrev) {
  CordRepBtreeNavigator nav;
  nav.InitFirst(tree());
  const Flats& flats = this->flats();

  EXPECT_THAT(nav.Previous(), Eq(nullptr));
  EXPECT_THAT(nav.Current(), Eq(flats.front()));
  for (int i = 1; i < flats.size(); ++i) {
    ASSERT_THAT(nav.Next(), Eq(flats[i]));
    EXPECT_THAT(nav.Current(), Eq(flats[i]));
  }
  EXPECT_THAT(nav.Next(), Eq(nullptr));
  EXPECT_THAT(nav.Current(), Eq(flats.back()));
  for (int i = static_cast<int>(flats.size()) - 2; i >= 0; --i) {
    ASSERT_THAT(nav.Previous(), Eq(flats[i]));
    EXPECT_THAT(nav.Current(), Eq(flats[i]));
  }
  EXPECT_THAT(nav.Previous(), Eq(nullptr));
  EXPECT_THAT(nav.Current(), Eq(flats.front()));
}

TEST_P(CordRepBtreeNavigatorTest, PrevNext) {
  CordRepBtreeNavigator nav;
  nav.InitLast(tree());
  const Flats& flats = this->flats();

  EXPECT_THAT(nav.Next(), Eq(nullptr));
  EXPECT_THAT(nav.Current(), Eq(flats.back()));
  for (int i = static_cast<int>(flats.size()) - 2; i >= 0; --i) {
    ASSERT_THAT(nav.Previous(), Eq(flats[i]));
    EXPECT_THAT(nav.Current(), Eq(flats[i]));
  }
  EXPECT_THAT(nav.Previous(), Eq(nullptr));
  EXPECT_THAT(nav.Current(), Eq(flats.front()));
  for (int i = 1; i < flats.size(); ++i) {
    ASSERT_THAT(nav.Next(), Eq(flats[i]));
    EXPECT_THAT(nav.Current(), Eq(flats[i]));
  }
  EXPECT_THAT(nav.Next(), Eq(nullptr));
  EXPECT_THAT(nav.Current(), Eq(flats.back()));
}

TEST(CordRepBtreeNavigatorTest, Reset) {
  CordRepBtree* tree = CordRepBtree::Create(MakeFlat("abc"));
  CordRepBtreeNavigator nav;
  nav.InitFirst(tree);
  nav.Reset();
  EXPECT_FALSE(nav);
  EXPECT_THAT(nav.btree(), Eq(nullptr));
#if defined(GTEST_HAS_DEATH_TEST) && !defined(NDEBUG)
  EXPECT_DEATH(nav.Current(), ".*");
#endif
  CordRep::Unref(tree);
}

TEST_P(CordRepBtreeNavigatorTest, Skip) {
  int count = this->count();
  const Flats& flats = this->flats();
  CordRepBtreeNavigator nav;
  nav.InitFirst(tree());

  for (int char_offset = 0; char_offset < kCharsPerFlat; ++char_offset) {
    Position pos = nav.Skip(char_offset);
    EXPECT_THAT(pos.edge, Eq(nav.Current()));
    EXPECT_THAT(pos.edge, Eq(flats[0]));
    EXPECT_THAT(pos.offset, Eq(char_offset));
  }

  for (int index1 = 0; index1 < count; ++index1) {
    for (int index2 = index1; index2 < count; ++index2) {
      for (int char_offset = 0; char_offset < kCharsPerFlat; ++char_offset) {
        CordRepBtreeNavigator nav;
        nav.InitFirst(tree());

        size_t length1 = index1 * kCharsPerFlat;
        Position pos1 = nav.Skip(length1 + char_offset);
        ASSERT_THAT(pos1.edge, Eq(flats[index1]));
        ASSERT_THAT(pos1.edge, Eq(nav.Current()));
        ASSERT_THAT(pos1.offset, Eq(char_offset));

        size_t length2 = index2 * kCharsPerFlat;
        Position pos2 = nav.Skip(length2 - length1 + char_offset);
        ASSERT_THAT(pos2.edge, Eq(flats[index2]));
        ASSERT_THAT(pos2.edge, Eq(nav.Current()));
        ASSERT_THAT(pos2.offset, Eq(char_offset));
      }
    }
  }
}

TEST_P(CordRepBtreeNavigatorTest, Seek) {
  int count = this->count();
  const Flats& flats = this->flats();
  CordRepBtreeNavigator nav;
  nav.InitFirst(tree());

  for (int char_offset = 0; char_offset < kCharsPerFlat; ++char_offset) {
    Position pos = nav.Seek(char_offset);
    EXPECT_THAT(pos.edge, Eq(nav.Current()));
    EXPECT_THAT(pos.edge, Eq(flats[0]));
    EXPECT_THAT(pos.offset, Eq(char_offset));
  }

  for (int index = 0; index < count; ++index) {
    for (int char_offset = 0; char_offset < kCharsPerFlat; ++char_offset) {
      size_t offset = index * kCharsPerFlat + char_offset;
      Position pos1 = nav.Seek(offset);
      ASSERT_THAT(pos1.edge, Eq(flats[index]));
      ASSERT_THAT(pos1.edge, Eq(nav.Current()));
      ASSERT_THAT(pos1.offset, Eq(char_offset));
    }
  }
}

TEST(CordRepBtreeNavigatorTest, InitOffset) {
  // Whitebox: InitOffset() is implemented in terms of Seek() which is
  // exhaustively tested. Only test it initializes / forwards properly..
  CordRepBtree* tree = CordRepBtree::Create(MakeFlat("abc"));
  tree = CordRepBtree::Append(tree, MakeFlat("def"));
  CordRepBtreeNavigator nav;
  Position pos = nav.InitOffset(tree, 5);
  EXPECT_TRUE(nav);
  EXPECT_THAT(nav.btree(), Eq(tree));
  EXPECT_THAT(pos.edge, Eq(tree->Edges()[1]));
  EXPECT_THAT(pos.edge, Eq(nav.Current()));
  EXPECT_THAT(pos.offset, Eq(2));
  CordRep::Unref(tree);
}

TEST(CordRepBtreeNavigatorTest, InitOffsetAndSeekBeyondLength) {
  CordRepBtree* tree1 = CordRepBtree::Create(MakeFlat("abc"));
  CordRepBtree* tree2 = CordRepBtree::Create(MakeFlat("def"));

  CordRepBtreeNavigator nav;
  nav.InitFirst(tree1);
  EXPECT_THAT(nav.Seek(3).edge, Eq(nullptr));
  EXPECT_THAT(nav.Seek(100).edge, Eq(nullptr));
  EXPECT_THAT(nav.btree(), Eq(tree1));
  EXPECT_THAT(nav.Current(), Eq(tree1->Edges().front()));

  EXPECT_THAT(nav.InitOffset(tree2, 3).edge, Eq(nullptr));
  EXPECT_THAT(nav.InitOffset(tree2, 100).edge, Eq(nullptr));
  EXPECT_THAT(nav.btree(), Eq(tree1));
  EXPECT_THAT(nav.Current(), Eq(tree1->Edges().front()));

  CordRep::Unref(tree1);
  CordRep::Unref(tree2);
}

TEST_P(CordRepBtreeNavigatorTest, Read) {
  const Flats& flats = this->flats();
  const std::string& data = this->data();

  for (size_t offset = 0; offset < data.size(); ++offset) {
    for (size_t length = 1; length <= data.size() - offset; ++length) {
      CordRepBtreeNavigator nav;
      nav.InitFirst(tree());

      // Skip towards edge holding offset
      size_t edge_offset = nav.Skip(offset).offset;

      // Read node
      ReadResult result = nav.Read(edge_offset, length);
      ASSERT_THAT(result.tree, Ne(nullptr));
      EXPECT_THAT(result.tree->length, Eq(length));
      if (result.tree->tag == BTREE) {
        ASSERT_TRUE(CordRepBtree::IsValid(result.tree->btree()));
      }

      // Verify contents
      std::string value = CordToString(result.tree);
      EXPECT_THAT(value, Eq(data.substr(offset, length)));

      // Verify 'partial last edge' reads.
      size_t partial = (offset + length) % kCharsPerFlat;
      ASSERT_THAT(result.n, Eq(partial));

      // Verify ending position if not EOF
      if (offset + length < data.size()) {
        size_t index = (offset + length) / kCharsPerFlat;
        EXPECT_THAT(nav.Current(), Eq(flats[index]));
      }

      CordRep::Unref(result.tree);
    }
  }
}

TEST_P(CordRepBtreeNavigatorTest, ReadBeyondLengthOfTree) {
  CordRepBtreeNavigator nav;
  nav.InitFirst(tree());
  ReadResult result = nav.Read(2, tree()->length);
  ASSERT_THAT(result.tree, Eq(nullptr));
}

}  // namespace
}  // namespace cord_internal
ABSL_NAMESPACE_END
}  // namespace absl