aboutsummaryrefslogtreecommitdiff
path: root/third_party/abseil-cpp/absl/strings/internal/cordz_info.cc
blob: 5c18bbc566dc9a2269b135a6c570ff94ee25350b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/strings/internal/cordz_info.h"

#include "absl/base/config.h"
#include "absl/base/internal/spinlock.h"
#include "absl/container/inlined_vector.h"
#include "absl/debugging/stacktrace.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_btree.h"
#include "absl/strings/internal/cord_rep_ring.h"
#include "absl/strings/internal/cordz_handle.h"
#include "absl/strings/internal/cordz_statistics.h"
#include "absl/strings/internal/cordz_update_tracker.h"
#include "absl/synchronization/mutex.h"
#include "absl/types/span.h"

namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {

using ::absl::base_internal::SpinLockHolder;

constexpr int CordzInfo::kMaxStackDepth;

ABSL_CONST_INIT CordzInfo::List CordzInfo::global_list_{absl::kConstInit};

namespace {

// CordRepAnalyzer performs the analysis of a cord.
//
// It computes absolute node counts and total memory usage, and an 'estimated
// fair share memory usage` statistic.
// Conceptually, it divides the 'memory usage' at each location in the 'cord
// graph' by the cumulative reference count of that location. The cumulative
// reference count is the factored total of all edges leading into that node.
//
// The top level node is treated specially: we assume the current thread
// (typically called from the CordzHandler) to hold a reference purely to
// perform a safe analysis, and not being part of the application. So we
// substract 1 from the reference count of the top node to compute the
// 'application fair share' excluding the reference of the current thread.
//
// An example of fair sharing, and why we multiply reference counts:
// Assume we have 2 CordReps, both being a Substring referencing a Flat:
//   CordSubstring A (refcount = 5) --> child Flat C (refcount = 2)
//   CordSubstring B (refcount = 9) --> child Flat C (refcount = 2)
//
// Flat C has 2 incoming edges from the 2 substrings (refcount = 2) and is not
// referenced directly anywhere else. Translated into a 'fair share', we then
// attribute 50% of the memory (memory / refcount = 2) to each incoming edge.
// Rep A has a refcount of 5, so we attribute each incoming edge 1 / 5th of the
// memory cost below it, i.e.: the fair share of Rep A of the memory used by C
// is then 'memory C / (refcount C * refcount A) + (memory A / refcount A)'.
// It is also easy to see how all incoming edges add up to 100%.
class CordRepAnalyzer {
 public:
  // Creates an analyzer instance binding to `statistics`.
  explicit CordRepAnalyzer(CordzStatistics& statistics)
      : statistics_(statistics) {}

  // Analyzes the memory statistics and node counts for the provided `rep`, and
  // adds the results to `statistics`. Note that node counts and memory sizes
  // are not initialized, computed values are added to any existing values.
  void AnalyzeCordRep(const CordRep* rep) {
    // Process all linear nodes.
    // As per the class comments, use refcout - 1 on the top level node, as the
    // top level node is assumed to be referenced only for analysis purposes.
    size_t refcount = rep->refcount.Get();
    RepRef repref{rep, (refcount > 1) ? refcount - 1 : 1};

    // Process all top level linear nodes (substrings and flats).
    repref = CountLinearReps(repref, memory_usage_);

    if (repref.rep != nullptr) {
      if (repref.rep->tag == RING) {
        AnalyzeRing(repref);
      } else if (repref.rep->tag == BTREE) {
        AnalyzeBtree(repref);
      } else if (repref.rep->tag == CONCAT) {
        AnalyzeConcat(repref);
      } else {
        // We should have either a concat, btree, or ring node if not null.
        assert(false);
      }
    }

    // Adds values to output
    statistics_.estimated_memory_usage += memory_usage_.total;
    statistics_.estimated_fair_share_memory_usage +=
        static_cast<size_t>(memory_usage_.fair_share);
  }

 private:
  // RepRef identifies a CordRep* inside the Cord tree with its cumulative
  // refcount including itself. For example, a tree consisting of a substring
  // with a refcount of 3 and a child flat with a refcount of 4 will have RepRef
  // refcounts of 3 and 12 respectively.
  struct RepRef {
    const CordRep* rep;
    size_t refcount;

    // Returns a 'child' RepRef which contains the cumulative reference count of
    // this instance multiplied by the child's reference count.
    RepRef Child(const CordRep* child) const {
      return RepRef{child, refcount * child->refcount.Get()};
    }
  };

  // Memory usage values
  struct MemoryUsage {
    size_t total = 0;
    double fair_share = 0.0;

    // Adds 'size` memory usage to this class, with a cumulative (recursive)
    // reference count of `refcount`
    void Add(size_t size, size_t refcount) {
      total += size;
      fair_share += static_cast<double>(size) / refcount;
    }
  };

  // Returns `rr` if `rr.rep` is not null and a CONCAT type.
  // Asserts that `rr.rep` is a concat node or null.
  static RepRef AssertConcat(RepRef repref) {
    const CordRep* rep = repref.rep;
    assert(rep == nullptr || rep->tag == CONCAT);
    return (rep != nullptr && rep->tag == CONCAT) ? repref : RepRef{nullptr, 0};
  }

  // Counts a flat of the provide allocated size
  void CountFlat(size_t size) {
    statistics_.node_count++;
    statistics_.node_counts.flat++;
    if (size <= 64) {
      statistics_.node_counts.flat_64++;
    } else if (size <= 128) {
      statistics_.node_counts.flat_128++;
    } else if (size <= 256) {
      statistics_.node_counts.flat_256++;
    } else if (size <= 512) {
      statistics_.node_counts.flat_512++;
    } else if (size <= 1024) {
      statistics_.node_counts.flat_1k++;
    }
  }

  // Processes 'linear' reps (substring, flat, external) not requiring iteration
  // or recursion. Returns RefRep{null} if all reps were processed, else returns
  // the top-most non-linear concat or ring cordrep.
  // Node counts are updated into `statistics_`, memory usage is update into
  // `memory_usage`, which typically references `memory_usage_` except for ring
  // buffers where we count children unrounded.
  RepRef CountLinearReps(RepRef rep, MemoryUsage& memory_usage) {
    // Consume all substrings
    while (rep.rep->tag == SUBSTRING) {
      statistics_.node_count++;
      statistics_.node_counts.substring++;
      memory_usage.Add(sizeof(CordRepSubstring), rep.refcount);
      rep = rep.Child(rep.rep->substring()->child);
    }

    // Consume possible FLAT
    if (rep.rep->tag >= FLAT) {
      size_t size = rep.rep->flat()->AllocatedSize();
      CountFlat(size);
      memory_usage.Add(size, rep.refcount);
      return RepRef{nullptr, 0};
    }

    // Consume possible external
    if (rep.rep->tag == EXTERNAL) {
      statistics_.node_count++;
      statistics_.node_counts.external++;
      size_t size = rep.rep->length + sizeof(CordRepExternalImpl<intptr_t>);
      memory_usage.Add(size, rep.refcount);
      return RepRef{nullptr, 0};
    }

    return rep;
  }

  // Analyzes the provided concat node in a flattened recursive way.
  void AnalyzeConcat(RepRef rep) {
    absl::InlinedVector<RepRef, 47> pending;

    while (rep.rep != nullptr) {
      const CordRepConcat* concat = rep.rep->concat();
      RepRef left = rep.Child(concat->left);
      RepRef right = rep.Child(concat->right);

      statistics_.node_count++;
      statistics_.node_counts.concat++;
      memory_usage_.Add(sizeof(CordRepConcat), rep.refcount);

      right = AssertConcat(CountLinearReps(right, memory_usage_));
      rep = AssertConcat(CountLinearReps(left, memory_usage_));
      if (rep.rep != nullptr) {
        if (right.rep != nullptr) {
          pending.push_back(right);
        }
      } else if (right.rep != nullptr) {
        rep = right;
      } else if (!pending.empty()) {
        rep = pending.back();
        pending.pop_back();
      }
    }
  }

  // Analyzes the provided ring.
  void AnalyzeRing(RepRef rep) {
    statistics_.node_count++;
    statistics_.node_counts.ring++;
    const CordRepRing* ring = rep.rep->ring();
    memory_usage_.Add(CordRepRing::AllocSize(ring->capacity()), rep.refcount);
    ring->ForEach([&](CordRepRing::index_type pos) {
      CountLinearReps(rep.Child(ring->entry_child(pos)), memory_usage_);
    });
  }

  // Analyzes the provided btree.
  void AnalyzeBtree(RepRef rep) {
    statistics_.node_count++;
    statistics_.node_counts.btree++;
    memory_usage_.Add(sizeof(CordRepBtree), rep.refcount);
    const CordRepBtree* tree = rep.rep->btree();
    if (tree->height() > 0) {
      for (CordRep* edge : tree->Edges()) {
        AnalyzeBtree(rep.Child(edge));
      }
    } else {
      for (CordRep* edge : tree->Edges()) {
        CountLinearReps(rep.Child(edge), memory_usage_);
      }
    }
  }

  CordzStatistics& statistics_;
  MemoryUsage memory_usage_;
};

}  // namespace

CordzInfo* CordzInfo::Head(const CordzSnapshot& snapshot) {
  ABSL_ASSERT(snapshot.is_snapshot());

  // We can do an 'unsafe' load of 'head', as we are guaranteed that the
  // instance it points to is kept alive by the provided CordzSnapshot, so we
  // can simply return the current value using an acquire load.
  // We do enforce in DEBUG builds that the 'head' value is present in the
  // delete queue: ODR violations may lead to 'snapshot' and 'global_list_'
  // being in different libraries / modules.
  CordzInfo* head = global_list_.head.load(std::memory_order_acquire);
  ABSL_ASSERT(snapshot.DiagnosticsHandleIsSafeToInspect(head));
  return head;
}

CordzInfo* CordzInfo::Next(const CordzSnapshot& snapshot) const {
  ABSL_ASSERT(snapshot.is_snapshot());

  // Similar to the 'Head()' function, we do not need a mutex here.
  CordzInfo* next = ci_next_.load(std::memory_order_acquire);
  ABSL_ASSERT(snapshot.DiagnosticsHandleIsSafeToInspect(this));
  ABSL_ASSERT(snapshot.DiagnosticsHandleIsSafeToInspect(next));
  return next;
}

void CordzInfo::TrackCord(InlineData& cord, MethodIdentifier method) {
  assert(cord.is_tree());
  assert(!cord.is_profiled());
  CordzInfo* cordz_info = new CordzInfo(cord.as_tree(), nullptr, method);
  cord.set_cordz_info(cordz_info);
  cordz_info->Track();
}

void CordzInfo::TrackCord(InlineData& cord, const InlineData& src,
                          MethodIdentifier method) {
  assert(cord.is_tree());
  assert(src.is_tree());

  // Unsample current as we the current cord is being replaced with 'src',
  // so any method history is no longer relevant.
  CordzInfo* cordz_info = cord.cordz_info();
  if (cordz_info != nullptr) cordz_info->Untrack();

  // Start new cord sample
  cordz_info = new CordzInfo(cord.as_tree(), src.cordz_info(), method);
  cord.set_cordz_info(cordz_info);
  cordz_info->Track();
}

void CordzInfo::MaybeTrackCordImpl(InlineData& cord, const InlineData& src,
                                   MethodIdentifier method) {
  if (src.is_profiled()) {
    TrackCord(cord, src, method);
  } else if (cord.is_profiled()) {
    cord.cordz_info()->Untrack();
    cord.clear_cordz_info();
  }
}

CordzInfo::MethodIdentifier CordzInfo::GetParentMethod(const CordzInfo* src) {
  if (src == nullptr) return MethodIdentifier::kUnknown;
  return src->parent_method_ != MethodIdentifier::kUnknown ? src->parent_method_
                                                           : src->method_;
}

int CordzInfo::FillParentStack(const CordzInfo* src, void** stack) {
  assert(stack);
  if (src == nullptr) return 0;
  if (src->parent_stack_depth_) {
    memcpy(stack, src->parent_stack_, src->parent_stack_depth_ * sizeof(void*));
    return src->parent_stack_depth_;
  }
  memcpy(stack, src->stack_, src->stack_depth_ * sizeof(void*));
  return src->stack_depth_;
}

CordzInfo::CordzInfo(CordRep* rep, const CordzInfo* src,
                     MethodIdentifier method)
    : rep_(rep),
      stack_depth_(absl::GetStackTrace(stack_, /*max_depth=*/kMaxStackDepth,
                                       /*skip_count=*/1)),
      parent_stack_depth_(FillParentStack(src, parent_stack_)),
      method_(method),
      parent_method_(GetParentMethod(src)),
      create_time_(absl::Now()) {
  update_tracker_.LossyAdd(method);
  if (src) {
    // Copy parent counters.
    update_tracker_.LossyAdd(src->update_tracker_);
  }
}

CordzInfo::~CordzInfo() {
  // `rep_` is potentially kept alive if CordzInfo is included
  // in a collection snapshot (which should be rare).
  if (ABSL_PREDICT_FALSE(rep_)) {
    CordRep::Unref(rep_);
  }
}

void CordzInfo::Track() {
  SpinLockHolder l(&list_->mutex);

  CordzInfo* const head = list_->head.load(std::memory_order_acquire);
  if (head != nullptr) {
    head->ci_prev_.store(this, std::memory_order_release);
  }
  ci_next_.store(head, std::memory_order_release);
  list_->head.store(this, std::memory_order_release);
}

void CordzInfo::Untrack() {
  ODRCheck();
  {
    SpinLockHolder l(&list_->mutex);

    CordzInfo* const head = list_->head.load(std::memory_order_acquire);
    CordzInfo* const next = ci_next_.load(std::memory_order_acquire);
    CordzInfo* const prev = ci_prev_.load(std::memory_order_acquire);

    if (next) {
      ABSL_ASSERT(next->ci_prev_.load(std::memory_order_acquire) == this);
      next->ci_prev_.store(prev, std::memory_order_release);
    }
    if (prev) {
      ABSL_ASSERT(head != this);
      ABSL_ASSERT(prev->ci_next_.load(std::memory_order_acquire) == this);
      prev->ci_next_.store(next, std::memory_order_release);
    } else {
      ABSL_ASSERT(head == this);
      list_->head.store(next, std::memory_order_release);
    }
  }

  // We can no longer be discovered: perform a fast path check if we are not
  // listed on any delete queue, so we can directly delete this instance.
  if (SafeToDelete()) {
    UnsafeSetCordRep(nullptr);
    delete this;
    return;
  }

  // We are likely part of a snapshot, extend the life of the CordRep
  {
    absl::MutexLock lock(&mutex_);
    if (rep_) CordRep::Ref(rep_);
  }
  CordzHandle::Delete(this);
}

void CordzInfo::Lock(MethodIdentifier method)
    ABSL_EXCLUSIVE_LOCK_FUNCTION(mutex_) {
  mutex_.Lock();
  update_tracker_.LossyAdd(method);
  assert(rep_);
}

void CordzInfo::Unlock() ABSL_UNLOCK_FUNCTION(mutex_) {
  bool tracked = rep_ != nullptr;
  mutex_.Unlock();
  if (!tracked) {
    Untrack();
  }
}

absl::Span<void* const> CordzInfo::GetStack() const {
  return absl::MakeConstSpan(stack_, stack_depth_);
}

absl::Span<void* const> CordzInfo::GetParentStack() const {
  return absl::MakeConstSpan(parent_stack_, parent_stack_depth_);
}

CordzStatistics CordzInfo::GetCordzStatistics() const {
  CordzStatistics stats;
  stats.method = method_;
  stats.parent_method = parent_method_;
  stats.update_tracker = update_tracker_;
  if (CordRep* rep = RefCordRep()) {
    stats.size = rep->length;
    CordRepAnalyzer analyzer(stats);
    analyzer.AnalyzeCordRep(rep);
    CordRep::Unref(rep);
  }
  return stats;
}

}  // namespace cord_internal
ABSL_NAMESPACE_END
}  // namespace absl