aboutsummaryrefslogtreecommitdiff
path: root/third_party/libaom/source/libaom/av1/common/alloccommon.c
blob: 86242552183da644169c7ba6f7209ed2f1007545 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
/*
 *
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "config/aom_config.h"

#include "aom_mem/aom_mem.h"

#include "av1/common/alloccommon.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#include "av1/common/cdef_block.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/thread_common.h"

int av1_get_MBs(int width, int height) {
  const int aligned_width = ALIGN_POWER_OF_TWO(width, 3);
  const int aligned_height = ALIGN_POWER_OF_TWO(height, 3);
  const int mi_cols = aligned_width >> MI_SIZE_LOG2;
  const int mi_rows = aligned_height >> MI_SIZE_LOG2;

  const int mb_cols = (mi_cols + 2) >> 2;
  const int mb_rows = (mi_rows + 2) >> 2;
  return mb_rows * mb_cols;
}

void av1_free_ref_frame_buffers(BufferPool *pool) {
  int i;

  for (i = 0; i < FRAME_BUFFERS; ++i) {
    if (pool->frame_bufs[i].ref_count > 0 &&
        pool->frame_bufs[i].raw_frame_buffer.data != NULL) {
      pool->release_fb_cb(pool->cb_priv, &pool->frame_bufs[i].raw_frame_buffer);
      pool->frame_bufs[i].raw_frame_buffer.data = NULL;
      pool->frame_bufs[i].raw_frame_buffer.size = 0;
      pool->frame_bufs[i].raw_frame_buffer.priv = NULL;
      pool->frame_bufs[i].ref_count = 0;
    }
    aom_free(pool->frame_bufs[i].mvs);
    pool->frame_bufs[i].mvs = NULL;
    aom_free(pool->frame_bufs[i].seg_map);
    pool->frame_bufs[i].seg_map = NULL;
    aom_free_frame_buffer(&pool->frame_bufs[i].buf);
  }
}

static INLINE void free_cdef_linebuf_conditional(
    AV1_COMMON *const cm, const size_t *new_linebuf_size) {
  CdefInfo *cdef_info = &cm->cdef_info;
  for (int plane = 0; plane < MAX_MB_PLANE; plane++) {
    if (new_linebuf_size[plane] != cdef_info->allocated_linebuf_size[plane]) {
      aom_free(cdef_info->linebuf[plane]);
      cdef_info->linebuf[plane] = NULL;
    }
  }
}

static INLINE void free_cdef_bufs_conditional(AV1_COMMON *const cm,
                                              uint16_t **colbuf,
                                              uint16_t **srcbuf,
                                              const size_t *new_colbuf_size,
                                              const size_t new_srcbuf_size) {
  CdefInfo *cdef_info = &cm->cdef_info;
  if (new_srcbuf_size != cdef_info->allocated_srcbuf_size) {
    aom_free(*srcbuf);
    *srcbuf = NULL;
  }
  for (int plane = 0; plane < MAX_MB_PLANE; plane++) {
    if (new_colbuf_size[plane] != cdef_info->allocated_colbuf_size[plane]) {
      aom_free(colbuf[plane]);
      colbuf[plane] = NULL;
    }
  }
}

static INLINE void free_cdef_bufs(uint16_t **colbuf, uint16_t **srcbuf) {
  aom_free(*srcbuf);
  *srcbuf = NULL;
  for (int plane = 0; plane < MAX_MB_PLANE; plane++) {
    aom_free(colbuf[plane]);
    colbuf[plane] = NULL;
  }
}

static INLINE void free_cdef_row_sync(AV1CdefRowSync **cdef_row_mt,
                                      const int num_mi_rows) {
  if (*cdef_row_mt == NULL) return;
#if CONFIG_MULTITHREAD
  for (int row_idx = 0; row_idx < num_mi_rows; row_idx++) {
    pthread_mutex_destroy((*cdef_row_mt)[row_idx].row_mutex_);
    pthread_cond_destroy((*cdef_row_mt)[row_idx].row_cond_);
    aom_free((*cdef_row_mt)[row_idx].row_mutex_);
    aom_free((*cdef_row_mt)[row_idx].row_cond_);
  }
#else
  (void)num_mi_rows;
#endif  // CONFIG_MULTITHREAD
  aom_free(*cdef_row_mt);
  *cdef_row_mt = NULL;
}

void av1_free_cdef_buffers(AV1_COMMON *const cm,
                           AV1CdefWorkerData **cdef_worker,
                           AV1CdefSync *cdef_sync, int num_workers) {
  CdefInfo *cdef_info = &cm->cdef_info;
  const int num_mi_rows = cdef_info->allocated_mi_rows;

  for (int plane = 0; plane < MAX_MB_PLANE; plane++) {
    aom_free(cdef_info->linebuf[plane]);
    cdef_info->linebuf[plane] = NULL;
  }
  // De-allocation of column buffer & source buffer (worker_0).
  free_cdef_bufs(cdef_info->colbuf, &cdef_info->srcbuf);

  if (num_workers < 2) return;
  if (*cdef_worker != NULL) {
    for (int idx = num_workers - 1; idx >= 1; idx--) {
      // De-allocation of column buffer & source buffer for remaining workers.
      free_cdef_bufs((*cdef_worker)[idx].colbuf, &(*cdef_worker)[idx].srcbuf);
    }
    aom_free(*cdef_worker);
    *cdef_worker = NULL;
  }
  free_cdef_row_sync(&cdef_sync->cdef_row_mt, num_mi_rows);
}

static INLINE void alloc_cdef_linebuf(AV1_COMMON *const cm, uint16_t **linebuf,
                                      const int num_planes) {
  CdefInfo *cdef_info = &cm->cdef_info;
  for (int plane = 0; plane < num_planes; plane++) {
    if (linebuf[plane] == NULL)
      CHECK_MEM_ERROR(cm, linebuf[plane],
                      aom_malloc(cdef_info->allocated_linebuf_size[plane]));
  }
}

static INLINE void alloc_cdef_bufs(AV1_COMMON *const cm, uint16_t **colbuf,
                                   uint16_t **srcbuf, const int num_planes) {
  CdefInfo *cdef_info = &cm->cdef_info;
  if (*srcbuf == NULL)
    CHECK_MEM_ERROR(cm, *srcbuf,
                    aom_memalign(16, cdef_info->allocated_srcbuf_size));

  for (int plane = 0; plane < num_planes; plane++) {
    if (colbuf[plane] == NULL)
      CHECK_MEM_ERROR(cm, colbuf[plane],
                      aom_malloc(cdef_info->allocated_colbuf_size[plane]));
  }
}

static INLINE void alloc_cdef_row_sync(AV1_COMMON *const cm,
                                       AV1CdefRowSync **cdef_row_mt,
                                       const int num_mi_rows) {
  if (*cdef_row_mt != NULL) return;

  CHECK_MEM_ERROR(cm, *cdef_row_mt,
                  aom_malloc(sizeof(**cdef_row_mt) * num_mi_rows));
#if CONFIG_MULTITHREAD
  for (int row_idx = 0; row_idx < num_mi_rows; row_idx++) {
    CHECK_MEM_ERROR(cm, (*cdef_row_mt)[row_idx].row_mutex_,
                    aom_malloc(sizeof(*(*cdef_row_mt)[row_idx].row_mutex_)));
    pthread_mutex_init((*cdef_row_mt)[row_idx].row_mutex_, NULL);

    CHECK_MEM_ERROR(cm, (*cdef_row_mt)[row_idx].row_cond_,
                    aom_malloc(sizeof(*(*cdef_row_mt)[row_idx].row_cond_)));
    pthread_cond_init((*cdef_row_mt)[row_idx].row_cond_, NULL);

    (*cdef_row_mt)[row_idx].is_row_done = 0;
  }
#endif  // CONFIG_MULTITHREAD
}

void av1_alloc_cdef_buffers(AV1_COMMON *const cm,
                            AV1CdefWorkerData **cdef_worker,
                            AV1CdefSync *cdef_sync, int num_workers) {
  const int num_planes = av1_num_planes(cm);
  size_t new_linebuf_size[MAX_MB_PLANE] = { 0 };
  size_t new_colbuf_size[MAX_MB_PLANE] = { 0 };
  size_t new_srcbuf_size = 0;
  CdefInfo *const cdef_info = &cm->cdef_info;
  // Check for configuration change
  const int num_mi_rows =
      (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
  const int is_num_workers_changed =
      cdef_info->allocated_num_workers != num_workers;
  const int is_cdef_enabled =
      cm->seq_params->enable_cdef && !cm->tiles.large_scale;

  // num-bufs=3 represents ping-pong buffers for top linebuf,
  // followed by bottom linebuf.
  // ping-pong is to avoid top linebuf over-write by consecutive row.
  int num_bufs = 3;
  if (num_workers > 1)
    num_bufs = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;

  if (is_cdef_enabled) {
    // Calculate src buffer size
    new_srcbuf_size = sizeof(*cdef_info->srcbuf) * CDEF_INBUF_SIZE;
    for (int plane = 0; plane < num_planes; plane++) {
      const int shift =
          plane == AOM_PLANE_Y ? 0 : cm->seq_params->subsampling_x;
      // Calculate top and bottom line buffer size
      const int luma_stride =
          ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols << MI_SIZE_LOG2, 4);
      new_linebuf_size[plane] = sizeof(*cdef_info->linebuf) * num_bufs *
                                (CDEF_VBORDER << 1) * (luma_stride >> shift);
      // Calculate column buffer size
      const int block_height =
          (CDEF_BLOCKSIZE << (MI_SIZE_LOG2 - shift)) * 2 * CDEF_VBORDER;
      new_colbuf_size[plane] =
          sizeof(*cdef_info->colbuf[plane]) * block_height * CDEF_HBORDER;
    }
  }

  // Free src, line and column buffers for worker 0 in case of reallocation
  free_cdef_linebuf_conditional(cm, new_linebuf_size);
  free_cdef_bufs_conditional(cm, cdef_info->colbuf, &cdef_info->srcbuf,
                             new_colbuf_size, new_srcbuf_size);

  if (*cdef_worker != NULL) {
    if (is_num_workers_changed) {
      // Free src and column buffers for remaining workers in case of change in
      // num_workers
      for (int idx = cdef_info->allocated_num_workers - 1; idx >= 1; idx--)
        free_cdef_bufs((*cdef_worker)[idx].colbuf, &(*cdef_worker)[idx].srcbuf);
    } else if (num_workers > 1) {
      // Free src and column buffers for remaining workers in case of
      // reallocation
      for (int idx = num_workers - 1; idx >= 1; idx--)
        free_cdef_bufs_conditional(cm, (*cdef_worker)[idx].colbuf,
                                   &(*cdef_worker)[idx].srcbuf, new_colbuf_size,
                                   new_srcbuf_size);
    }
  }

  if (cdef_info->allocated_mi_rows != num_mi_rows)
    free_cdef_row_sync(&cdef_sync->cdef_row_mt, cdef_info->allocated_mi_rows);

  // Store allocated sizes for reallocation
  cdef_info->allocated_srcbuf_size = new_srcbuf_size;
  av1_copy(cdef_info->allocated_colbuf_size, new_colbuf_size);
  av1_copy(cdef_info->allocated_linebuf_size, new_linebuf_size);
  // Store configuration to check change in configuration
  cdef_info->allocated_mi_rows = num_mi_rows;
  cdef_info->allocated_num_workers = num_workers;

  if (!is_cdef_enabled) return;

  // Memory allocation of column buffer & source buffer (worker_0).
  alloc_cdef_bufs(cm, cdef_info->colbuf, &cdef_info->srcbuf, num_planes);
  alloc_cdef_linebuf(cm, cdef_info->linebuf, num_planes);

  if (num_workers < 2) return;

  if (*cdef_worker == NULL)
    CHECK_MEM_ERROR(cm, *cdef_worker,
                    aom_calloc(num_workers, sizeof(**cdef_worker)));

  // Memory allocation of column buffer & source buffer for remaining workers.
  for (int idx = num_workers - 1; idx >= 1; idx--)
    alloc_cdef_bufs(cm, (*cdef_worker)[idx].colbuf, &(*cdef_worker)[idx].srcbuf,
                    num_planes);

  alloc_cdef_row_sync(cm, &cdef_sync->cdef_row_mt,
                      cdef_info->allocated_mi_rows);
}

#if !CONFIG_REALTIME_ONLY
// Assumes cm->rst_info[p].restoration_unit_size is already initialized
void av1_alloc_restoration_buffers(AV1_COMMON *cm) {
  const int num_planes = av1_num_planes(cm);
  for (int p = 0; p < num_planes; ++p)
    av1_alloc_restoration_struct(cm, &cm->rst_info[p], p > 0);

  if (cm->rst_tmpbuf == NULL) {
    CHECK_MEM_ERROR(cm, cm->rst_tmpbuf,
                    (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE));
  }

  if (cm->rlbs == NULL) {
    CHECK_MEM_ERROR(cm, cm->rlbs, aom_malloc(sizeof(RestorationLineBuffers)));
  }

  // For striped loop restoration, we divide each row of tiles into "stripes",
  // of height 64 luma pixels but with an offset by RESTORATION_UNIT_OFFSET
  // luma pixels to match the output from CDEF. We will need to store 2 *
  // RESTORATION_CTX_VERT lines of data for each stripe, and also need to be
  // able to quickly answer the question "Where is the <n>'th stripe for tile
  // row <m>?" To make that efficient, we generate the rst_last_stripe array.
  int num_stripes = 0;
  for (int i = 0; i < cm->tiles.rows; ++i) {
    TileInfo tile_info;
    av1_tile_set_row(&tile_info, cm, i);
    const int mi_h = tile_info.mi_row_end - tile_info.mi_row_start;
    const int ext_h = RESTORATION_UNIT_OFFSET + (mi_h << MI_SIZE_LOG2);
    const int tile_stripes = (ext_h + 63) / 64;
    num_stripes += tile_stripes;
  }

  // Now we need to allocate enough space to store the line buffers for the
  // stripes
  const int frame_w = cm->superres_upscaled_width;
  const int use_highbd = cm->seq_params->use_highbitdepth;

  for (int p = 0; p < num_planes; ++p) {
    const int is_uv = p > 0;
    const int ss_x = is_uv && cm->seq_params->subsampling_x;
    const int plane_w = ((frame_w + ss_x) >> ss_x) + 2 * RESTORATION_EXTRA_HORZ;
    const int stride = ALIGN_POWER_OF_TWO(plane_w, 5);
    const int buf_size = num_stripes * stride * RESTORATION_CTX_VERT
                         << use_highbd;
    RestorationStripeBoundaries *boundaries = &cm->rst_info[p].boundaries;

    if (buf_size != boundaries->stripe_boundary_size ||
        boundaries->stripe_boundary_above == NULL ||
        boundaries->stripe_boundary_below == NULL) {
      aom_free(boundaries->stripe_boundary_above);
      aom_free(boundaries->stripe_boundary_below);

      CHECK_MEM_ERROR(cm, boundaries->stripe_boundary_above,
                      (uint8_t *)aom_memalign(32, buf_size));
      CHECK_MEM_ERROR(cm, boundaries->stripe_boundary_below,
                      (uint8_t *)aom_memalign(32, buf_size));

      boundaries->stripe_boundary_size = buf_size;
    }
    boundaries->stripe_boundary_stride = stride;
  }
}

void av1_free_restoration_buffers(AV1_COMMON *cm) {
  int p;
  for (p = 0; p < MAX_MB_PLANE; ++p)
    av1_free_restoration_struct(&cm->rst_info[p]);
  aom_free(cm->rst_tmpbuf);
  cm->rst_tmpbuf = NULL;
  aom_free(cm->rlbs);
  cm->rlbs = NULL;
  for (p = 0; p < MAX_MB_PLANE; ++p) {
    RestorationStripeBoundaries *boundaries = &cm->rst_info[p].boundaries;
    aom_free(boundaries->stripe_boundary_above);
    aom_free(boundaries->stripe_boundary_below);
    boundaries->stripe_boundary_above = NULL;
    boundaries->stripe_boundary_below = NULL;
  }

  aom_free_frame_buffer(&cm->rst_frame);
}
#endif  // !CONFIG_REALTIME_ONLY

void av1_free_above_context_buffers(CommonContexts *above_contexts) {
  int i;
  const int num_planes = above_contexts->num_planes;

  for (int tile_row = 0; tile_row < above_contexts->num_tile_rows; tile_row++) {
    for (i = 0; i < num_planes; i++) {
      aom_free(above_contexts->entropy[i][tile_row]);
      above_contexts->entropy[i][tile_row] = NULL;
    }
    aom_free(above_contexts->partition[tile_row]);
    above_contexts->partition[tile_row] = NULL;

    aom_free(above_contexts->txfm[tile_row]);
    above_contexts->txfm[tile_row] = NULL;
  }
  for (i = 0; i < num_planes; i++) {
    aom_free(above_contexts->entropy[i]);
    above_contexts->entropy[i] = NULL;
  }
  aom_free(above_contexts->partition);
  above_contexts->partition = NULL;

  aom_free(above_contexts->txfm);
  above_contexts->txfm = NULL;

  above_contexts->num_tile_rows = 0;
  above_contexts->num_mi_cols = 0;
  above_contexts->num_planes = 0;
}

void av1_free_context_buffers(AV1_COMMON *cm) {
  cm->mi_params.free_mi(&cm->mi_params);

  av1_free_above_context_buffers(&cm->above_contexts);

#if CONFIG_LPF_MASK
  av1_free_loop_filter_mask(cm);
#endif
}

int av1_alloc_above_context_buffers(CommonContexts *above_contexts,
                                    int num_tile_rows, int num_mi_cols,
                                    int num_planes) {
  const int aligned_mi_cols =
      ALIGN_POWER_OF_TWO(num_mi_cols, MAX_MIB_SIZE_LOG2);

  // Allocate above context buffers
  above_contexts->num_tile_rows = num_tile_rows;
  above_contexts->num_mi_cols = aligned_mi_cols;
  above_contexts->num_planes = num_planes;
  for (int plane_idx = 0; plane_idx < num_planes; plane_idx++) {
    above_contexts->entropy[plane_idx] = (ENTROPY_CONTEXT **)aom_calloc(
        num_tile_rows, sizeof(above_contexts->entropy[0]));
    if (!above_contexts->entropy[plane_idx]) return 1;
  }

  above_contexts->partition = (PARTITION_CONTEXT **)aom_calloc(
      num_tile_rows, sizeof(above_contexts->partition));
  if (!above_contexts->partition) return 1;

  above_contexts->txfm =
      (TXFM_CONTEXT **)aom_calloc(num_tile_rows, sizeof(above_contexts->txfm));
  if (!above_contexts->txfm) return 1;

  for (int tile_row = 0; tile_row < num_tile_rows; tile_row++) {
    for (int plane_idx = 0; plane_idx < num_planes; plane_idx++) {
      above_contexts->entropy[plane_idx][tile_row] =
          (ENTROPY_CONTEXT *)aom_calloc(
              aligned_mi_cols, sizeof(*above_contexts->entropy[0][tile_row]));
      if (!above_contexts->entropy[plane_idx][tile_row]) return 1;
    }

    above_contexts->partition[tile_row] = (PARTITION_CONTEXT *)aom_calloc(
        aligned_mi_cols, sizeof(*above_contexts->partition[tile_row]));
    if (!above_contexts->partition[tile_row]) return 1;

    above_contexts->txfm[tile_row] = (TXFM_CONTEXT *)aom_calloc(
        aligned_mi_cols, sizeof(*above_contexts->txfm[tile_row]));
    if (!above_contexts->txfm[tile_row]) return 1;
  }

  return 0;
}

// Allocate the dynamically allocated arrays in 'mi_params' assuming
// 'mi_params->set_mb_mi()' was already called earlier to initialize the rest of
// the struct members.
static int alloc_mi(CommonModeInfoParams *mi_params) {
  const int aligned_mi_rows = calc_mi_size(mi_params->mi_rows);
  const int mi_grid_size = mi_params->mi_stride * aligned_mi_rows;
  const int alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
  const int alloc_mi_size =
      mi_params->mi_alloc_stride * (aligned_mi_rows / alloc_size_1d);

  if (mi_params->mi_alloc_size < alloc_mi_size ||
      mi_params->mi_grid_size < mi_grid_size) {
    mi_params->free_mi(mi_params);

    mi_params->mi_alloc =
        aom_calloc(alloc_mi_size, sizeof(*mi_params->mi_alloc));
    if (!mi_params->mi_alloc) return 1;
    mi_params->mi_alloc_size = alloc_mi_size;

    mi_params->mi_grid_base = (MB_MODE_INFO **)aom_calloc(
        mi_grid_size, sizeof(*mi_params->mi_grid_base));
    if (!mi_params->mi_grid_base) return 1;
    mi_params->mi_grid_size = mi_grid_size;

    mi_params->tx_type_map =
        aom_calloc(mi_grid_size, sizeof(*mi_params->tx_type_map));
    if (!mi_params->tx_type_map) return 1;
  }

  return 0;
}

int av1_alloc_context_buffers(AV1_COMMON *cm, int width, int height) {
  CommonModeInfoParams *const mi_params = &cm->mi_params;
  mi_params->set_mb_mi(mi_params, width, height);
  if (alloc_mi(mi_params)) goto fail;
  return 0;

fail:
  // clear the mi_* values to force a realloc on resync
  mi_params->set_mb_mi(mi_params, 0, 0);
  av1_free_context_buffers(cm);
  return 1;
}

void av1_remove_common(AV1_COMMON *cm) {
  av1_free_context_buffers(cm);

  aom_free(cm->fc);
  cm->fc = NULL;
  aom_free(cm->default_frame_context);
  cm->default_frame_context = NULL;
}

void av1_init_mi_buffers(CommonModeInfoParams *mi_params) {
  mi_params->setup_mi(mi_params);
}

#if CONFIG_LPF_MASK
int av1_alloc_loop_filter_mask(AV1_COMMON *cm) {
  aom_free(cm->lf.lfm);
  cm->lf.lfm = NULL;

  // Each lfm holds bit masks for all the 4x4 blocks in a max
  // 64x64 (128x128 for ext_partitions) region.  The stride
  // and rows are rounded up / truncated to a multiple of 16
  // (32 for ext_partition).
  cm->lf.lfm_stride =
      (cm->mi_params.mi_cols + (MI_SIZE_64X64 - 1)) >> MIN_MIB_SIZE_LOG2;
  cm->lf.lfm_num =
      ((cm->mi_params.mi_rows + (MI_SIZE_64X64 - 1)) >> MIN_MIB_SIZE_LOG2) *
      cm->lf.lfm_stride;
  cm->lf.lfm =
      (LoopFilterMask *)aom_calloc(cm->lf.lfm_num, sizeof(*cm->lf.lfm));
  if (!cm->lf.lfm) return 1;

  unsigned int i;
  for (i = 0; i < cm->lf.lfm_num; ++i) av1_zero(cm->lf.lfm[i]);

  return 0;
}

void av1_free_loop_filter_mask(AV1_COMMON *cm) {
  if (cm->lf.lfm == NULL) return;

  aom_free(cm->lf.lfm);
  cm->lf.lfm = NULL;
  cm->lf.lfm_num = 0;
  cm->lf.lfm_stride = 0;
}
#endif